K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(A=\left(x+2\right)^2+\left(x+7\right)^2+33\)

Ta có:

\(\left(x+2\right)^2+\left(x+7\right)^2=\left(x+2\right)^2+\left(-x-7\right)^2\) \(\ge\left(x+2-x-7\right)^2=25\)

\(\Rightarrow\left(x+2\right)^2+\left(x+7\right)^2+33\ge25+33\)

\(\Rightarrow A\ge58\) \(\Leftrightarrow x=-2\) hoặc \(x=-7\)

 

DT
29 tháng 8 2023

\(A=\left(x+2\right)^2+\left(x+7\right)^2+33\\ =x^2+4x+4+x^2+14x+49+33\\ =2x^2+18x+86\\ =2\left(x^2+9x+43\right)\\ =2\left(x+\dfrac{9}{2}\right)^2+\dfrac{91}{2}\ge\dfrac{91}{2}\)

Dấu = xảy ra: \(x+\dfrac{9}{2}=0=>x=-\dfrac{9}{2}\)

Vậy min A = 91/2 tại x = -9/2

15 tháng 2 2017

A=0 nhé

15 tháng 2 2017

a) \(\left|x-7\right|+\left|x+5\right|=\left|7-x\right|+\left|x+5\right|\ge\left|7-x+x+5\right|=12\)

Dấu "=" xảy ra khi \(-5\le x\le7\)

b) Đặt \(\left|2x-1\right|=t\left(t\ge0\right)\)

ta được \(t^2-3t+2=\left(t^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{1}{4}=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left(t-\frac{3}{2}\right)^2=0\Leftrightarrow t-\frac{3}{2}=0\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\left|2x-1\right|=\frac{3}{2}\)

<=>\(\orbr{\begin{cases}2x-1=-\frac{3}{2}\\2x-1=\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{1}{2}\\2x=\frac{5}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{5}{4}\end{cases}}\)

Vậy...........

15 tháng 11 2018

\(\left|x^2+x+16\right|=x^2+\left|x+16\right|\)( vì \(x^2\ge0\))

\(\left|x^2+x-6\right|=x^2+\left|x-6\right|\)(vì \(x^2\ge0\))

\(\left|x+16\right|+\left|x-6\right|=\left|x+16\right|=\left|-x+6\right|\ge\left|22\right|=22\)

dấu = xảy ra khi và chỉ khi \(\left(x+16\right).\left(-x+6\right)\ge0\Rightarrow-16\le x\le6\)(1)

\(x^2\ge0\Rightarrow x^2+x^2\ge0\)

dấu = xảy ra khi và chỉ khi x=0 (2)

=> \(x^2+\left|x+16\right|+x^2+\left|x-6\right|\ge22+0=22\)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra 

=> x=0

Vậy min A=22 khi và chỉ khi x=0

p/s: ko chắc lắm, sai sót bỏ qua :))

27 tháng 10 2018

\(\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)

\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2\right|=2\)

dấu "="xảy ra khi \(\left(2x-1\right).\left(3-2x\right)\ge0\)

\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

vậy min A=2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

29 tháng 10 2016

\(\left|x+2,56\right|\ge0\)

\(2\left|4y-6\right|\ge0\)

\(\left|x+2,56\right|+2\left|4y-6\right|-7\ge-7\)

\(MinH=-7\Leftrightarrow x=-2,56;y=\frac{3}{2}\)