K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
19 tháng 7 2022

\(A=\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4-\left(x^2-4\right)+x^2-8x+16=x^2-4x+24\\ \cdot x=-2=>A=\left(-2\right)^2-4.\left(-2\right)+24=36\\ \cdot x=0=>A=0^2-4.0+24=24\\ \cdot x=2=>A=2^2-4.2+24=20\\ A=\left(x-2\right)^2+20>0\left(DPCM\right)\)

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

11 tháng 10 2018

a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(A=4x^2+4x+1-x^2+4-2x^2-2x\)

\(A=x^2+2x+5\)

b) Để A = 4

=> \(x^2+2x+5=4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c) Ta có A = x2 + 2x + 5

A = ( x + 1 )2 + 4

=> \(A\ge4>0\left(đpcm\right)\)

11 tháng 10 2018

a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(=4x^2+4x+1-x^2+4-2x^2-2x\)

\(=x^2+2x+5\)

b,\(A=x^2+2x+5=4\)

\(\Rightarrow x^2+2x+5-4=0\)

\(x^2+2x+1=0\)

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)

Hay: A > 0 => đpcm

=.= hok tốt!!

1 tháng 11 2018

\(a,\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right)\)

\(x^2+2x+1+2x^2-4x=3\left(x^2+5x+4\right)\)

\(3x^2-2x+1=3x^2+15x+12\)

\(\Rightarrow3x^2-2x+1-3x^2-15x-12=0\)

\(\Rightarrow-17x=11\)

\(\Rightarrow x=-\frac{11}{17}\)

\(b,M=x^2+12x+50\)

\(M=x^2+2.6.x+6^2+14\)

\(M=\left(x+6\right)^2+14\ge14>0\)

=> M luôn dương 

1 tháng 11 2018

\(\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right).\)

\(\Leftrightarrow x^2+2x+1+2x^2-4x=3.(x^2+x+4x+4)\)

\(\Leftrightarrow x^2-2x+2x^2+1=3x^2+15x+12\)

\(\left(x^2-3x^2+2x^2\right)=\left(15x+2x\right)+12-1\)

\(17x+11=0\)

\(\Leftrightarrow x=\frac{-11}{17}\)

13 tháng 7 2016

Bài 1:

a) \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)

\(=2a.2b\)

\(=4ab\)

13 tháng 7 2016

Câu 1:

a) (a +b )2 - ( a -b )2

=a2+b2-a2+b2

=2b2

 b) (a + b )3- ( a - b )3 - 2b3

=a3+b3-a+b3-2b3

=a3-a

c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2

=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2

=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2

=0

5 tháng 12 2015

a)ĐKXĐ:

\(x+2\ne0\Leftrightarrow x\ne-2\)

b)\(\frac{x^2+4x+4}{x+2}=\frac{\left(x+2\right)^2}{x+2}=x+2\)

c)\(\text{Để phân thức =0 thì x+2=0},\text{mà x+2}\ne0\text{,nên ko có giá trị nào của để phân thức =0}\)

5 tháng 12 2015

\(\frac{x^2+4x+4}{x+2}\)

a/ Để phân thức đc xác định thì x + 2 \(\ne\) 0 => x \(\ne\) -2

Vậy để phân thức đc xác định thì x \(\ne\) -2

b/ \(\frac{x^2+4x+4}{x+2}=\frac{\left(x+2\right)^2}{x+2}=x+2\)

c/ Để phân thức bằng 0 thì x + 2 = 0 => x = -2 (loại)

Vậy không có giá trị nào của x để phân thức = 0

Bài 1: 

a: \(A=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)

\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

b: Để A=2 thì x-1=1/2

hay x=3/2