Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 1:
\(A=-x^2-2x+9\)
\(A=-\left(x^2+2x-9\right)\)
\(A=-\left(x^2+2x+1-10\right)\)
\(A=-\left(x+1\right)^2+10\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+1\right)^2+10\le10\)
\(\Rightarrow Amax=10\Leftrightarrow x=-1\)
\(B=-9x^2+6x+25\)
\(B=-\left(9x^2-6x-25\right)\)
\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)
\(B=-\left(3x-1\right)^2+26\)
Vì \(-\left(3x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(3x-1\right)^2+26\le26\)
\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(C=-x^2+x+1\)
\(C=-\left(x^2-x-1\right)\)
\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)
\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-2x^2+3x+1\)
\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)
\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)
Vì \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)
\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)
\(E=-25x^2-10x+7\)
\(E=-\left(25x^2+10x-7\right)\)
\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)
\(E=-\left(5x+1\right)^2+8\)
Vì \(-\left(5x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(5x+1\right)^2+8\le8\)
\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Bài 2:
\(A=9x^2+6x+4\)
\(A=\left(3x\right)^2+2.3x+1+3\)
\(A=\left(3x+1\right)^2+3\)
Vì \(\left(3x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x+1\right)^2+3\ge3\)
\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=4x^2+4x+12\)
\(B=\left(2x\right)^2+2.2x+1+11\)
\(B=\left(2x+1\right)^2+11\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+11\ge11\)
\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=x^2+x+3\)
\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(D=2x^2+3x+1\)
\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)
\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
\(E=64x^2+16x+3\)
\(E=\left(8x\right)^2+2.8x+1+2\)
\(E=\left(8x+1\right)^2+2\)
Vì \(\left(8x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(8x+1\right)^2+2\ge2\)
\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=-3\left(x-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x=1
b: \(B=-\left(16x^2+8x-4\right)\)
\(=-\left(16x^2+8x+1-5\right)\)
\(=-\left(4x+1\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-1/4
d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)
=>E<=1/2
Dấu '=' xảy ra khi x=-1
A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15
Ta có: (x - 4)2 \(\ge\)0 \(\forall\)x
=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x
Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4
vậy Min của A = -15 tại x = 4
B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6
Ta có: (x - 2/3)2 \(\ge\)0 \(\forall\)x ---> 9(x - 2/3)2 \(\ge\)0 \(\forall\)x
=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x
Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3
vậy Min của B = -6 tại x = 2/3