Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)^2+4x\left(1+x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)\times\left[\left(1+x^2\right)+4\right]\)
( 1+x2 )2 -4x( 1- x2 )
=x4+2x2+1-4x+4x3
=x3+2x2-x+2x3+4x2-2x-x2-2x+1
=x(x2+2x-1)+2x(x2+2x-1)-(x2+2x-1)
=(x2+2x-1)(x2+2x-1)
=(x2+2x-1)2
\(\left(1+x\right)^2-4x\left(1-x^2\right)\)
\(=\left(1+x\right)^2-4x\left(1-x\right)\left(1+x\right)\)
\(=\left(1+x\right)\left(1+x-4\left(1-x\right)\right)\)
\(=\left(1+x\right)\left(1+x-4+4x\right)\)
\(=\left(1+x\right)\left(5x-3\right)\)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
a)\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
b)\(x^4-x^3-x^2+1=\left(x^4-x^3\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
c)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
a) (2x - 1)2 - (x + 3)2
= (2x - 1 - x - 3).(2x - 1 + x + 3)
= (x - 4).(3x + 2)
b) x2.(x - 3) + 12 - 4x
= x2.(x - 3) - 4x + 12
= x2.(x - 3) - 4.(x - 3)
= (x - 3).(x2 - 4)
= (x - 3).(x - 2).(x + 2)
Áp dụng HĐT:
a2 - b2 = (a - b)(a + b)
\(\left(2x-1\right)^2-\left(x+3\right)^2\)
\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)
\(=\left(x-4\right)\left(3x+2\right)\)
\(\left(x-2\right)^3-1=\left(x-2\right)\left[\left(x-3\right)^2+x-2\right]=\left(x-2\right)\left(x^2+5x+7\right)\)
\(\left(x+3y\right)^2-9y^2=x\left(x+6y\right)\)
\(\left(x+3\right)^2-\left(x-1\right)^2=4\left(2x+4\right)=8\left(x+2\right)\)
a) \(\left(x-2\right)^3-1=\left(x-2\right)^3-1^3=\left(x-2-1\right)\left[\left(x-2\right)^2+\left(x-2\right)\cdot1+1^2\right]\)\(=\left(x-3\right)\left(x^2-4x+4+x-2+1\right)\)
\(=\left(x-3\right)\left(x^2-3x+3\right)\)
b) \(\left(x+3y\right)^2-9y^2\)
\(=\left(x+3y\right)^2-\left(3y\right)^2\)
\(=\left(x+3y+3y\right)\left(x+3y-3y\right)\)
\(=x\left(x+6y\right)\)
c) \(\left(x+3\right)^2-\left(x-1\right)^2\)
\(=\left(x+3-x+1\right)\left(x+3+x-1\right)\)
\(=4\left(2x+2\right)\)
\(=8\left(x+1\right)\)
27x3 + 27x2 + 9x + 1 + x + 1/3
= ( 27x3 + 27x2 + 9x + 1 ) + 1/3( 3x + 1 )
= ( 3x + 1 )3 + 1/3( 3x + 1 )
= ( 3x + 1 )[ ( 3x + 1 )2 + 1/3 ]
= ( 3x + 1 )( 9x2 + 6x + 1 + 1/3 )
= ( 3x + 1 )( 9x2 + 6x + 4/3 )
a(x2 + 1) - x(a2 + 1) = ax2 + a - a2x - x = (ax2 - a2x) +(a - x) = ax(x - a) - (x - a) = (x - a)(ax - 1)
a(x2+1)-x(a2+1)
=ax2+a-a2x-x
=(ax2-a2x) + (a-x)
=ax(x-a) + (a-x)
=ax(x-a) - (x-a)
=(x-a)(ax-1)