K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

3 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)

\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)

b) Khi \(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)

\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)

c) Để A = 0

\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919

Phần này mik k biết phân tích như thế nào, tính ra :

\(\Leftrightarrow x\approx2,89328919\)

Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !

d) Để \(A\inℤ\)

\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)

\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

26 tháng 6 2018

ĐKXĐ: \(x\ne0;x\ne\pm2\)

a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)

b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)

Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)

Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)

c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy x=3/2 thì A=2

d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy với x>2 thì A<0

e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}

Ta có: x-2=1 => x=3 (t/m)

          x-2=-1 => x=1 (t/m)

Vậy x thuộc {3;1} thì A thuộc Z

26 tháng 6 2018

a)  \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)

\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)

\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)

Vậy \(A=\frac{1}{2-x}.\)

b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)

Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...

c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...

d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...

e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)

Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)

Vậy x=1 hay x=3 thì A nguyên.

12 tháng 8 2021

Trả lời:

a,  \(ĐK:x\ne\frac{1}{3}\)

 \(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)

\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)

b, \(5x^2+3x=0\)

\(\Leftrightarrow x\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)

Thay x = 0 vào A, ta có :

\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)

Thay x = - 3/5 vào A, ta có :

\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)

c, \(A=\frac{x}{x-1}\)

\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)

\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

\(\Rightarrow x-1=3x^2-x\)

\(\Leftrightarrow3x^2-x-x+1=0\)

\(\Leftrightarrow3x^2-2x+1=0\)

\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)

\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)

Vậy không tìm được x thỏa mãn đề bài.

d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)

Vậy x thuộc Z thì 6/A thuộc Z

NM
12 tháng 8 2021

\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)

b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên

\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)

c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)

d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên