Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
Ta có:\(7\left(x-2004\right)^2=23-y^2\)
\(\Rightarrow y^2+7\left(x-2004\right)^2=23\)
Do \(y^2\ge0\Rightarrow7\left(x-2004\right)^2\le23\)
\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2004\right)^2=1\\\left(x-2004\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2004\end{cases}}\)
Với \(x=2005\Rightarrow23-7=y^2\)
\(\Rightarrow y^2=16\Rightarrow y=4\left(L\right)\) vì y là số nguyên tố.
Với \(x=2004\Rightarrow y^2=23\left(L\right)\)
Vậy không có số nguyên tố x;y thỏa mãn đề bài.
ta có: \(7.\left(x-2004\right)^2\ge0\)
\(\Rightarrow23-y^2\ge0\)
\(\Rightarrow y^2\in\left\{1;4;9;16;0\right\}\)
mà y là STN
=> \(y\in\left\{1;2;3;4;0\right\}\)
thay y = 1 vào bt
7.(x-2004)2 = 23 - 12
....
đến đây bn tự lm nha!
suy ra (x-2004)^2=\(\frac{23}{7}\)-\(\frac{y^2}{7}\)<4
suy ra \(\orbr{\begin{cases}\text{(x-2004)^2=0}\\\left(x-2004\right)^2=1\end{cases}}\)
suy ra \(\orbr{\begin{cases}x-2004=0\\x-2004=1\end{cases}}\)suy ra x=2004;x=2005;x=2003
\(\orbr{\begin{cases}x-2004=-1\\\end{cases}}\)
Với x=0 suy ra 23-y^2=0
suy ra y^2=23(loại)
Với x=1 suy ra 23-y^2=7
suy ra y^2=16
suy ra y=4(vì y thuộc N)
Vậy cặp số cần tìm là (x,y)=(2005;4);(2003;4)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
\(\frac{x^4}{a}=\frac{y^4}{b}=\frac{1}{a+b}=\frac{x^4+y^4}{a+b}\Rightarrow x^4+y^4=1.\)
Mà \(x^2+y^2=1\)=>\(x^4+y^4=x^2+y^2=1.\)
Nếu x =0 => y =1 => a =0 vô lí
Xem lại đề dc ko ( hay mình làm sai?)
1. Tìm x thỏa mản phương trình x nguyên
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left|x+1\right|=0\Rightarrow x=-1\) ( nhận )
Hoặc
\(x^2-5=0\Rightarrow x^2=5\) ( loại )
Hoặc
\(x^2-4=0\Rightarrow x^2=2^2\Rightarrow x=\pm2\)
Vậy: \(x=\left(-2;-1;2\right)\)
Bài 1:
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\x^2-5=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\sqrt{5}\\x=\pm2\end{matrix}\right.\)
Do \(x\in Z\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy...
Bài 3:
\(x^2-2xy+2y^2=0\)
\(\Rightarrow x^2-2xy+y^2+y^2=0\)
\(\Rightarrow\left(x-y\right)^2+y^2=0\)
Mà \(\left(x-y\right)^2+y^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\y^2=0\end{matrix}\right.\Rightarrow x=y=0\)
Vậy...
Bài 5,6 áp dụng t/c dãy tỉ số bằng nhau là ra
\(x-y+2xy=7\)
\(\Rightarrow2x-2y+4xy=14\)
\(\Rightarrow2x\left(1+2y\right)-\left(2y+1\right)=13\)
\(\Rightarrow\left(2y+1\right)\left(2x-1\right)=13\)
làm nốt
do \(7\left(x-2004\right)^2\ge0\)\(\Rightarrow23-y^2\ge0\)
\(\Rightarrow y^2\le23\)
\(\Rightarrow y^2\in\left\{16,9,4,1,0\right\}\)
\(\Rightarrow y\in\left\{\pm1,\pm2,\pm3,\pm4\right\}\)
thay vào rồi tìm x
đề thiếu x,y thuộc Z