Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)
b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)
c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))
h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))
Vậy \(x\in\left\{\varnothing\right\}\)
\(B=x^2+8x\)
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
\(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
Dấu "=" xảy ra khi:
\(\left(x+4\right)^2=0\Rightarrow x=-4\)
\(C-2x^2+8x-15\)
\(C=-2x^2+8x-8-7\)
\(C=-2\left(x^2-4x+4\right)-7\)
\(C=-2\left(x-2\right)^2-7\)
\(-2\left(x-2\right)^2\le0\Rightarrow-2\left(x-2\right)^2-7\le-7\)
Dấu "=" xảy ra khi:
\(-2\left(x-2\right)^2=0\Rightarrow x=2\)
\(A=x^2-4x+7\)
\(A=x^2-4x+4+3\)
\(A=\left(x-2\right)^2+3\)
\(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+3\ge3\)
Dấu "=" xảy ra khi:
\(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
A = 7(x2 -5x +3) -x(7x-35) - 14
= 7x2 - 35x +21 -7x2 + 35x -14
= 21 -14
= 7
==>Biểu thức A không phụ thuộc vào biến
B = (4x - 5 )(x+2) - (x+5)(x-3) -3x2 -x
= 4x2 + 3x - 10 - x2 - 2x +15 -3x2 -x
= -10 +15
= 5
==>KL:(như A chỉ thay A=B)
Câu C tương tự như A và B (bạn phân tích ra là đc)
NHỚ K CHO MK NHA :)))
\(A=\frac{x-2}{x+2}=\frac{x^2-4x+4}{x^2-4}=\frac{x^2-4-4x+8}{x^2-4}=1+\frac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=1-\frac{4}{x+2}\)
Để \(A\in Z\) thì \(\frac{4}{x+2}\in Z\Leftrightarrow x+2\inƯ\left(4\right)\)
\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)
\(B=\frac{3x-6}{x+6}=\frac{3x+18-24}{x+6}=\frac{3\left(x+6\right)}{x+6}-\frac{24}{x+6}=3-\frac{24}{x+6}\)
Để \(B\in Z\) thì \(\frac{24}{x+6}\in Z\Leftrightarrow x+6\inƯ\left(24\right)\)
\(\Rightarrow x\in\left\{-30;-18;-14;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;2;6;18\right\}\)
\(C=\frac{10-5x}{x-5}=\frac{-\left(5x-25+15\right)}{x-5}=\frac{-5\left(x-5\right)}{x-5}-\frac{15}{x-5}=-5-\frac{15}{x-5}\)
Để \(C\in Z\) thì \(\frac{15}{x-5}\in Z\Leftrightarrow x-5\inƯ\left(15\right)\)
\(\Rightarrow x\in\left\{-10;0;4;6;10;20\right\}\)
\(D=\frac{8x-2}{2-4x}=\frac{-\left(4-8x\right)+2}{2\left(1-2x\right)}=\frac{-4\left(1-2x\right)}{2\left(1-2x\right)}+\frac{2}{2\left(1-2x\right)}=-2+\frac{1}{1-2x}\)
Để \(D\in Z\) thì \(\frac{1}{1-2x}\in Z\Leftrightarrow1-2x\inƯ\left(1\right)\)
\(\Rightarrow x=0\)
(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6
Bài làm
a) 2( x + 1 ) - 4x = 6
=> 2x + 2 - 4x = 6
=> ( 2x - 4x ) + 2 = 6
=> -2x + 2 = 6
=> -2x = 4
=> x = -2
Vậy x = -2
b) 3( 2 - x ) + 4( 5 - x ) = 4
=> 6 - 3x + 20 - 4x = 4
=> ( 6 +20 ) + ( -3x - 4x ) = 4
=> 26 - 7x = 4
=> 7x = 22
=> x = 22/7
Vậy x = 22/7
c) Cũng phân tích như hai câu trên rồi rút gọn ra, sử dụng tính chất phân phối đó, do là phân số nên mik k muốn làm.
d) ( x + 1 )( x - 3 ) = 0
=> \(\hept{\begin{cases}x+1=0\Rightarrow x=-1\\x-3=0\Rightarrow x=3\end{cases}}\)
Vậy x = -1; x = 3
# Học tốt #
Tìm x biết :
a) \(2\left(x+1\right)-4x=6\)
\(\Rightarrow2x+2-4x=6\)
\(\Rightarrow2x-4x=6-2\)
\(\Rightarrow-2x=4\)
\(\Rightarrow x=-2\)
b) \(3\left(2-x\right)+4\left(5-x\right)=4\)
\(\Rightarrow6-3x+20-4x=4\)
\(\Rightarrow-3x-4x=4-6-20\)
\(\Rightarrow-7x=22\)
\(\Rightarrow x=-\frac{22}{7}\)
c) \(\frac{7}{3}.\left(x-\frac{4}{3}\right)+\frac{2}{5}.\left(4-\frac{1}{3}x\right)=0\)
\(\Rightarrow\frac{7}{3}x-\frac{28}{9}+\frac{8}{5}-\frac{2}{15}x=0\)
\(\Rightarrow\left(\frac{7}{3}x-\frac{2}{15}x\right)-\left(\frac{28}{9}-\frac{8}{5}\right)=0\)
\(\Rightarrow\frac{33}{15}x-\frac{68}{45}=0\)
\(\Rightarrow\frac{33}{15}.x=\frac{68}{45}\)
\(\Rightarrow x=\frac{68}{45}:\frac{33}{15}\)
\(\Rightarrow x=\frac{68}{99}\)
d) \(\left(x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
`A(x) =2x-1`
`2x-1=0`
`=> 2x=0+1`
`=>2x=1`
`=>x=1/2`
__
`B(x) =3 - 6/5x`
`3-6/5x=0`
`=> 6/5x=3-0`
`=> 6/5x=3`
`=> x= 3 : 6/5`
`=> x= 3 xx 5/6`
`=> x=15/6`
__
`C(x) = 4x^2 - 25`
`4x^2 - 25=0`
`=> 4x^2 = 0+25`
`=> 4x^2 =25`
`=> 4x^2 = (+-5)^2`
`=> x= 5/4` hoặc `x=-5/4`
__
`D(x) = ( x + 1/4 )^2 - 16/9`
` ( x + 1/4 )^2 - 16/9=0`
`=> ( x + 1/4 )^2 = 16/9`
`=>( x + 1/4 )^2 =(+-4/3)^2`
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{4}=\dfrac{4}{3}\\x+\dfrac{1}{4}=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
__
`E(x) = 8x^2 + 27`
`8x^2 +27=0`
`=>8x^2=0-27`
`=> 8x^2 =-27`
`->` đề hơi sai;-;.
__
`F(x) = x^2 + 3x`
`x^2 +3x=0`
`=>x(x+3)=0`
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
`@ yl`