Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
V...
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\frac{2013}{1}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+1\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=> x = 2014
Đề bài bn chép sai 1 chút nên mk sửa lại và lm như trên
\(A=\left|x-2012\right|+\left|x-2013\right|\\ A=\left|x-2012\right|+\left|2013-x\right|\)
Có: \(\left|x-2012\right|\ge x-2012\text{ với mọi }x\)
\(\left|2013-x\right|\ge2013-x\text{ với mọi }x\)
\(\Rightarrow\left|x-2012\right|+\left|2013-x\right|\ge x-2012+2013-x\text{ với mọi }x\\ \Rightarrow A\ge1\text{ với mọi }x\)
Vậy GTNN của A = 1
\("="\Leftrightarrow\left\{{}\begin{matrix}\left|x-2012\right|=x-2012\\\left|2013-x\right|=2013-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2012\ge0\\2013-x\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge2012\\x\le2013\end{matrix}\right.\\ \Leftrightarrow2012\le x\le2013\)
______________________________________
\(A=\left|x-1\right|+\left|x+2012\right|\\ A=\left|1-x\right|+\left|x+2012\right|\)
Có: \(\left|1-x\right|\ge1-x\text{ với mọi }x\)
\(\left|x+2012\right|\ge x+2012\text{ với mọi }x\)
\(\Rightarrow\left|1-x\right|+\left|x+2012\right|\ge1-x+x+2012\text{ với mọi }x\\ \Rightarrow A\ge2013\text{ với mọi }x\)
Vậy GTNN của A = 2013
\("="\Leftrightarrow\left\{{}\begin{matrix}\left|1-x\right|=1-x\\\left|x+2012\right|=x+2012\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+2012\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge-2012\end{matrix}\right.\\ \Leftrightarrow-2012\le x\le1\)