Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
\(A=\left(x-1\right)^2+\left(y-1\right)^2+3\ge3\)
Dấu "=" xảy ra khi: \(x=y=1\)
\(B=\left|x-3\right|+y^2-10\ge-10\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=3\\y=0\end{cases}}\)
\(C=x^2-2x+y^2+2=x^2-2x+1+y^2+1=\left(x-1\right)^2+y^2+1\ge1\)
Dấu "=" xay ra khi: \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
A >= 3
Dấu "=" xảy ra <=> x-1=0 và y-1=0 <=> x=y=1
Vậy ........
B >= -10
Dấu "=" xảy ra <=> x-3=0 và 0 <=> x=3 và y=0
Vậy ...........
C = (x^2-2x+1)+y^2+1
= (x-1)^2+y^2+1 >= 1
Dấu "=" xảy ra <=> x-1=0 và y=0 <=> x=1 và y=0
Vậy ............
Tk mk nha
Trong tập chứa x
Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)
Trong tập chứa y
Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)
a) Giá trị lớn nhất của x+y khi x lớn nhất và y lớn nhất
\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)
b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất
\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)
A=(x-1)10+(y-3)10+2024.Vì mũ chẵn nên kết quả không thể âm
=>x=0;y=0 và giá trị nhỏ nhất sẽ là:0+0+2024=2024