K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

A=(x-1)10+(y-3)10+2024.Vì mũ chẵn nên kết quả không thể âm 

=>x=0;y=0 và giá trị nhỏ nhất sẽ là:0+0+2024=2024

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

23 tháng 2 2016

a, vì (x-1)^2 >/ 0 với mọi x

(y-1)^2 >/ 0 với mọi y

=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y

=>(x-1)^2+(y-1)^2+3 >/ 3

Do đó Amax=3

 Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1

(y-1)^2 =0<=>y=1

23 tháng 2 2016

a) x=1,y=1

b) x=3,y=0

15 tháng 1 2018

\(A=\left(x-1\right)^2+\left(y-1\right)^2+3\ge3\)

Dấu "=" xảy ra khi: \(x=y=1\)

\(B=\left|x-3\right|+y^2-10\ge-10\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=3\\y=0\end{cases}}\)

\(C=x^2-2x+y^2+2=x^2-2x+1+y^2+1=\left(x-1\right)^2+y^2+1\ge1\)

Dấu "=" xay ra khi: \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

15 tháng 1 2018

A >= 3

Dấu "=" xảy ra <=> x-1=0 và y-1=0 <=> x=y=1

Vậy ........

B >= -10

Dấu "=" xảy ra <=> x-3=0 và 0 <=> x=3 và y=0

Vậy ...........

C = (x^2-2x+1)+y^2+1

   = (x-1)^2+y^2+1 >= 1

Dấu "=" xảy ra <=> x-1=0 và y=0 <=> x=1 và y=0

Vậy ............

Tk mk nha

11 tháng 7 2019

Trong tập chứa x

Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)

Trong tập chứa y

Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)

a) Giá trị lớn nhất của x+y khi x lớn nhất  và y lớn nhất

\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)

b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất

\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)