a)√(x-1) ≤2

b)√(3x-2)=2-x

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 8 2022

\(\sqrt{x-1}\le2\\ < =>0\le x-1\le4\\ < =>1\le x\le5\)

\(\sqrt{3x-2}=2-x\left(x\ge\dfrac{2}{3}\right)\\ < =>\left\{{}\begin{matrix}2-x\ge0\\3x-2=\left(2-x\right)^2=x^2-4x+4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}-x\ge-2\\x^2-7x+6=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le2\\\left(x-6\right)\left(x-1\right)=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\end{matrix}\right.< =>x=1\left(TM\right)\)

TL

Mik ko chắc chắn lắm nha sai thì t i k cho mik'

Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'

Hok tốt

28 tháng 10 2021

áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)

\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)

TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC

P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)

=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)

=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)

21 tháng 3 2021

\(x^2+x+m-2=0\)

\(a,m=0\)

\(\Rightarrow x^2+x-2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2

21 tháng 3 2021

a, Thay m = 0 vào phương trình trên ta được : 

\(x^2+x-2=0\)

Ta có : \(\Delta=1+8=9\)

\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)

Vậy m = 0 thì x = -2 ; x = 1 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)

hay bất phương trình trên tương đương : 

\(2m-3-3\left(m-2\right)< 1\)

\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)

\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)

30 tháng 5 2017

\(\hept{\begin{cases}\left(x+y\right)^2=16\\\left(x-y\right)^2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+2xy+y^2=16\\x^2-2xy+y^2\ge0\end{cases}\Leftrightarrow}x^2+y^2\ge8}\)

áp dụng AM - GM có:

\(P=x^2+y^2+\frac{12}{xy}\ge x^2+y^2+\frac{12}{\frac{x^2+y^2}{2}}=8+\frac{2.12}{8}=14\)

Vậy \(P_{min}\)=14 dấu "=" sảy ra khi : x=x=2

30 tháng 5 2017

Bài giải sai rồi

30 tháng 6 2021

a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0 

Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2

b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:

   2x2 = 2mx + 1  <=> 2x2 - 2mx - 1 = 0

\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)

<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)

<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)

<=> \(m^2+\frac{2.1}{2}-1=2021^2\)

<=> \(m^2=2021^2\)

<=> \(x=\pm2021\)

Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021

19 tháng 5 2023

m=1.