K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

\(ĐKXĐ:x\ne1\)

Ta có :

 \(x^2-2x+1=\left(x-1\right)^2>0\)(TH = 0 bị loại)

\(\Rightarrow\)Để \(A_{min}\Leftrightarrow3x^2-8x+6\)min

Có :\(3x^2-8x+6=\left(\sqrt{3}x+\frac{4\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Dấu " = " xảy ra :

\(\Leftrightarrow\sqrt{3}x+\frac{4\sqrt{3}}{3}=0\)

\(\Leftrightarrow x=-\frac{4}{3}\)(tm)

Vậy \(A_{min}=\frac{\frac{2}{3}}{\left(-\frac{4}{3}-1\right)^2}=\frac{6}{49}\Leftrightarrow x=-\frac{4}{3}\)

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

NV
30 tháng 6 2021

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

30 tháng 6 2021

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
15 tháng 10 2017

Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1

16 tháng 10 2017

khi x=2 chứ

22 tháng 6 2015

hình như tìm GTLN bạn à

27 tháng 6 2019

hình như tìm GTLN

b)

B=\(3x^2-6x+3+x+1\)

  =\(3.\left(x-1\right)^2+x+1\) 

.................

hc tốt