K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 10 2021

a) \(3x+8=3x+3+5=3\left(x+1\right)+5⋮\left(x+1\right)\)

\(\Leftrightarrow5⋮\left(x+1\right)\)mà \(x\)là số tự nhiên nên \(x+1\inƯ\left(5\right)=\left\{1,5\right\}\)

\(\Leftrightarrow x\in\left\{0,4\right\}\).

b) Do \(\left(a,b\right)=9\)nên ta đặt \(a=9m,b=9n,\left(m,n\right)=1\).

\(a+b=9m+9n=9\left(m+n\right)=45\Leftrightarrow m+n=5\)

Ta có bảng giá trị: 

m1234
n4321
a9182736
b3627189
7 tháng 10 2021

ta thấy:

(3x+8 )=(3x+3)+5

=>(3x+3)+5 \(⋮\)(x+1)

=>5\(⋮\)(x+1)

=>(x+1) thuộc Ư(5)={+-1;+-5}

=>

x+1           1        -1        5         -5

x              0          -2        4         -6

vậy x=0:-2:4:-6

7 tháng 10 2021

Giả sử a<b ( với a,b∈N*)

Ta có tổng của chúng bằng 45.

Vì ƯCLN(a,b)=9 nên:

a=9.m ; b=9.n ( với ƯCLN( m,n)=1 và m<n)

Ta có: 9m+9n = 45

⇒ 9. ( m+n)= 45

⇒ m+n = 45:9

⇒ m+n = 5

Vì ƯCLN(m,n)=1 và m<n nên ta có bảng sau:

m12
n43

a918
b3627

Vậy hai số cần tìm ( a,b)∈{( 9,36); (18,27)}

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 ...
Đọc tiếp

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5                                                                 Bài 5.  Cho hình vuông ABCD. Phần diện tích chung của ABCD và tam giác EFG được tô đen. Diện tích phần tô đen bằng 4/5 diện tích tam giác EFG và bằng 12 diện tích của hình vuông ABCD. Nếu diện tích tam giác EFG bằng 40cm, tính độ dài cạnh của hình vuông ABCD

0

a) Ta có :

108 = 22 . 33

180 = 22 . 32 . 5

=> ƯCLN( 108 , 180 ) = 22 . 32 = 36

=> ƯC( 108 , 180 ) = Ư( 36 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 36 }

Mà bài bảo tìm Ư( 108 , 180 ) lớn hơn 15

=> Ta có tập hợp { 18 ; 36 }

b) Ta có :

126 ⋮ x ; 210 ⋮ x ( 15 < x < 20 )

=> x ∈ ƯC( 126 ; 210 )

Ta có :

126 = 2 . 32 . 7

210 = 2 . 3 . 5 . 7

=> ƯCLN( 126 , 210 ) = 2 . 3 . 7 = 42

=> ƯC( 126 , 210 ) = Ư( 42 ) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }

=> x ∈ { 1 ; 2 ; 3 ; 6 ; 7 ;  14 ; 21 ; 42 }

Mà 15 < x < 20

=> x ∈ ∅

23 tháng 12 2021

a) Vì  nên (n + 1) ∈ Ư(6) = {1; 2; 3; 6}

Ta có bảng sau:

n + 1

2

3

6

n

0

1

2

5

Vì n là số tự nhiên nên n ∈ {0; 1; 2; 5}

Vậy n ∈ {0; 1; 2; 5}.
b) Gọi x = 23.3a  và y = 2b.35

Ta có tích của hai số là tích của ƯCLN và BCNN của hai số đó.

Ta có: x. y = ƯCLN(x, y). BCNN(x, y)

Vì ước chung lớn nhất của hai số là   và bội chung nhỏ nhất của hai số là 23.36.

Biết hai số 2^3.3^a và 2^b.3^5 có ước chung lớn nhất là 2^2.3^5 và

Vì thế 3 + b = 5. Suy ra b = 5 – 3 = 2

         a + 5 = 11. Suy ra a = 11 – 5 = 6

Vậy a = 6; b = 2.

 

 
11 tháng 11 2022

Gọi x = 23.3a  và y = 2b.35

Ta có: x. y = ƯCLN(x, y). BCNN(x, y)

Vì ước chung lớn nhất của hai số là 22.35 và bội chung nhỏ nhất của hai số là 23.36

Ta được x.y= 22.35.23.36=22.23.35.36=25.311

Mà xy =23+b.3a+5

Ta được 5=3+b và 11=a+5

Vậy b=2 và a=6

 

a: \(n+1\in\left\{1;2;3;6\right\}\)

hay \(n\in\left\{0;1;2;5\right\}\)

1 tháng 1 2022

cảm ơn bn nhiều

a: \(\Leftrightarrow n+1\in\left\{1;2;3;6\right\}\)

hay \(n\in\left\{0;1;2;5\right\}\)

22 tháng 10 2023
  1. Để tìm hai số tự nhiên a và b thoả mãn a + b = 810 và ước chung lớn nhất của chúng bằng 45, ta có thể sử dụng phương pháp giải hệ phương trình. Gọi UCLN(a, b) là ước chung lớn nhất của a và b.

Vì UCLN(a, b) = 45, ta có thể viết a = 45x và b = 45y, với x và y là các số tự nhiên. Thay vào phương trình a + b = 810, ta có 45x + 45y = 810, hay x + y = 18.

Bây giờ ta cần tìm hai số tự nhiên x và y thoả mãn x + y = 18. Có nhiều cách để làm điều này, ví dụ như x = 9 và y = 9. Khi đó, a = 45x = 45 * 9 = 405 và b = 45y = 45 * 9 = 405.

Vậy, hai số tự nhiên a và b là 405 và 405.

  1. Để tìm hai số nguyên tố p và q thoả mãn p > q và p + q cũng như p - q đều là số nguyên tố, ta cần kiểm tra các số nguyên tố và tìm hai số thoả mãn yêu cầu.

Có nhiều cách để làm điều này, ví dụ như kiểm tra từng số nguyên tố theo thứ tự tăng dần và kiểm tra điều kiện p + q và p - q cũng là số nguyên tố.

Ví dụ:

  • Kiểm tra số nguyên tố đầu tiên là 2. Ta sẽ thử p = 3 và q = 2. Khi đó, p + q = 3 + 2 = 5 là số nguyên tố và p - q = 3 - 2 = 1 không là số nguyên tố. Không thoả mãn yêu cầu.
  • Tiếp theo, kiểm tra số nguyên tố thứ hai là 3. Ta sẽ thử p = 5 và q = 3. Khi đó, p + q = 5 + 3 = 8 không là số nguyên tố. Không thoả mãn yêu cầu.
  • Tiếp tục kiểm tra các số nguyên tố tiếp theo. Cứ tiếp tục thử cho đến khi tìm được hai số thoả mãn yêu cầu.

Lưu ý rằng việc tìm hai số nguyên tố p và q thoả mãn yêu cầu là một vấn đề tương đối phức tạp và không có một cách giải đơn giản. Ta cần kiểm tra và thử nghiệm để tìm được kết quả.

AH
Akai Haruma
Giáo viên
22 tháng 10 2023

Bài 1:

Vì ƯCLN(a,b)=45 nên đặt $a=45x, b=45y$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

Ta có:

$a+b=810$

$45x+45y=810$

$45(x+y)=810$
$x+y=810:45=18$

Do $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là: $(1,17), (5,13), (7,11), (11,7), (13,5), (17,1)$

$\Rightarrow (a,b)=(45,765), (225, 535), (315, 495), (495, 315), (535,225), (765,45)$

AH
Akai Haruma
Giáo viên
22 tháng 10 2023

Bài 2:

Nếu $p,q$ cùng là số nguyên tố lẻ thì $p+q, p-q$ chẵn. Mà $p-q, p+q$ là snt nên:

$\Rightarrow p+q=2, p-q=2$

$\Rightarrow p=2, q=0$ (vô lý)

Vậy trong 2 số $p,q$ sẽ có 1 số chẵn và 1 số lẻ. Mà $p> q$ nên $p$ là số nguyên tố lẻ còn $q$ là snt chẵn ($q=2$)

Ta cần tìm $p$ nguyên tố sao cho $p+2$ và $p-2$ đều là snt.

Nếu $p\vdots 3$ thì $p=3$. Khi đó $p-2=1$ không là snt (loại) 

Nếu $p$ chia $3$ dư $1$ thì $p+2\vdots 3$. Mà $p+2>3$ nên không thể là snt (loại)

Nếu $p$ chia $3$ dư $2$ thì $p-2\vdots 3$

$\Rightarrow p-2=3$

$\Rightarrow p=5$. Khi đó: $p+2=7, p-2=3$ đều là snt (thỏa mãn)

Vậy $p=5,q=2$