Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
Để giải bài này ta dùng phương pháp chặn em nhé.
Vì n là số tự nhiên có hai chữ số nên 10 ≤ n ≤ 99
⇒ 3 \(\times\) 10 - 2 ≤ 3n - 2 ≤ 3 \(\times\) 99 - 2
⇒ 28 ≤ 3n - 2 ≤ 295
Vì 3n - 2; 2n - 1 đều là số chính phương nên ta có:
3n - 2 = m2
2n - 1 = k2 ( k, m \(\in\) N)
Trừ vế với vế ta có n - 1 = m2 - k2 ⇒ 2(n-1) = 2(m2 - k2)
⇒2n - 1 - 1 = 2m2 - 2k2
⇒ k2 - 1 = 2m2 - 2k2
⇒ 3k2 = 2m2 + 1
⇒ k2 = (2m2 + 1)/3
28 ≤ 3n - 2 ≤ 295
28 ≤ m2 ≤ 295
⇒ 6 ≤ m ≤ 17
2m2 + 1 ⋮ 3 ⇒ m2 không chia hết cho 3
⇒ m \(\in\) { 7; 8; 10; 11; 13; 14; 16; 17}
Với m = 7 ⇒ k2 = ( 2.49 + 1)/3 = 33 (loại)
m = 8 ⇒ k2 = (2.64 +1)/3 = 43 (loại)
m = 10 ⇒ k2 = (2.100 +1)/3 = 67 (loại)
m = 11 ⇒ k2 = ( 2. 121 +1)/3 = 81 (thỏa mãn)
m = 13 ⇒ k2 = ( 2.169 + 1)/3 =113 (loại)
m = 14 ⇒ k2 = (2. 196 + 1)/3 = 131 (loại)
m = 16 ⇒ k2 = ( 2.256 +1)/3 = 171 (loại)
m = 17 ⇒ k2 = (2.289 +1)/3 = 193 (loại)
Vậy m = 11 ⇒ 3n - 2 = 112 = 121 ⇒ 3n = 121 + 2 = 123
⇒ n = 123 : 3 = 41
Kết luận n = 41
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
+Ta có: 2n+1 và 3n+1 là số chính phương.
+Áp dụng bài 7, suy ra n chia hết cho 40. Mà n là số có 2 chữ số.
=> n=40 hoặc n=80.
+Trường hợp n=80 thì loại do 2.80+1 không phải là số chính phương.
Vậy n=40 thoả mãn đề bài
n là số có 2 chữ số => 9 < n < 100 => 19 < 2n + 1 < 201 mà 2n + 1 là số chính phương, lẻ nên 2n + 1 có thể bằng: 25; 49; 81; 121;169;
2n + 1 = 25 => n = 12 => 3n + 1= 37 ko là số cp => loại
2n + 1= 49 => n = 24 => 3n + 1 = 73 => loại
2n+ 1= 81 => n = 40 => 3n + 1= 121 thoả mãn. làm tương tự
......
KL: n = ....