Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)
\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)
Từ (1),(2)\(\Rightarrow a>b>c>0\)
Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)
Chứng minh tương tự, ta có:\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)
Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)
\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)
Từ (1),(2)\(\Rightarrow a>b>c>0\)
Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)
Chứng minh tương tự, ta có:
\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)
Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)
\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)
Từ (1),(2)\(\Rightarrow a>b>c>0\)
Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)
Chứng minh tương tự, ta có:\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)
Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
a) \(\sqrt{25m}=\sqrt{3}\Rightarrow25m=3\Rightarrow m=\dfrac{3}{25}\)(thỏa mãn)
Vậy S={\(\dfrac{3}{25}\)}
b) \(\sqrt{144\left(n-2\right)}=36\Leftrightarrow144\left(n-2\right)=1296\Leftrightarrow n-2=9\Leftrightarrow n=11\)(thõa mãn)
Vậy S={11}