Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5(\frac{a}{b}+\frac{1}{2})=2\frac{1}{3}\)
\( \iff5.\frac{a}{b}+5.\frac{1}{2}=\frac{7}{3}\)
\(\iff5.\frac{a}{b}+\frac{5}{2}=\frac{7}{3}\)
\(\iff 5.\frac{a}{b}=\frac{7}{3}-\frac{5}{2}\)
\(\iff 5.\frac{a}{b}=\frac{-1}{6}\)
\(\iff\frac{a}{b}=\frac{-1}{6}:5\)
\(\iff\frac{a}{b}=\frac{-1}{6}.\frac{1}{5}\)
\(\iff \frac{a}{b}=\frac{-1}{30}\)
Vậy \(\frac{a}{b}=\frac{-1}{30}\)
~ Hok tốt a~
\(5\left(ab+\frac{1}{2}\right)=2\frac{1}{3}\)
\(5\left(ab+\frac{1}{2}\right)=\frac{7}{3}\)
\(ab+\frac{1}{2}=\frac{7}{3}:5\)
\(ab+\frac{1}{2}=\frac{7}{15}\)
\(ab=\frac{7}{15}-\frac{1}{2}\)
\(ab=\frac{14}{30}-\frac{15}{30}\)
\(ab=-\frac{1}{30}\)
Vậy \(ab=-\frac{1}{30}\)
Ta có: \(A=\left(a-b\right).\left(a^2+a.b+b\right)^2\)
Hay \(A=\left[5-\left(-6\right)\right]\left[5^2+5.6+\left(-6\right)^2\right]\)
\(\Leftrightarrow A=11.\left[25+30+36\right]\)
\(\Leftrightarrow A=11.91\)
\(\Leftrightarrow A=1001\)
hok tốt!!
Thay a=5; b=-6 vào biểu thức A =(a-b)(a^2+ab+b^2) ta có:
A=[5.(-6)].[5^2+5.(-6)+(-6)^2]
=(-30).[25+(-30)+36]
= (-30) .(-5+36)
=(-30).31
=-930
Nhớ nha
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
B = c(a-b) - b(a-c) = ac - bc -ba + bc = ac -ba = -ba + ac = -a(b - c ) = - (-50).2=100
=.= hk tốt!!
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
a, \(5-\left(\frac{a}{b}+\frac{1}{2}\right)=2\frac{1}{3}\) => \(\frac{a}{b}+\frac{1}{2}=5-2\frac{1}{3}\) => \(\frac{a}{b}+\frac{1}{2}=\frac{8}{3}\) => \(\frac{a}{b}=\frac{8}{3}-\frac{1}{2}\) => \(\frac{a}{b}=\frac{13}{6}\)
b, \((\frac{3}{4}+2\frac{1}{2}):\frac{3}{5-3}=\left(\frac{3}{4}+\frac{5}{4}\right):\frac{3}{5}-1=\frac{9}{4}:\frac{-2}{5}=\frac{-45}{8}\)
a, 5-(\(\frac{a}{b}\)+\(\frac{1}{2}\))=2\(\frac{1}{3}\)
<=>5-\(\frac{a}{b}-\frac{1}{2}\)=\(\frac{7}{3}\)
<=>\(\frac{a}{b}=5-\frac{1}{2}-\frac{7}{3}\)
<=>\(\frac{a}{b}=\frac{13}{6}\)
b,(\(\frac{3}{4}\)+2\(\frac{1}{2}\)):\(\frac{3}{5}\)-3
=(\(\frac{3}{4}\)+\(\frac{5}{2}\)).\(\frac{5}{3}\)-3
=\(\frac{23}{4}\).\(\frac{5}{3}\)-3
=\(\frac{115}{12}\)-3
=\(\frac{115-36}{12}\)
=\(\frac{79}{12}\)