Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\)
Ta có: \(\left|1-x\right|+\left|x-4\right|\ge\left|1-x+x-4\right|=3\)
\(\left|2-x\right|+\left|x-3\right|\ge\left|2-x+x-3\right|=1\)
=> \(\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\ge3+1=4\)
=> \(A\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x-4\right)\ge0\\\left(2-x\right)\left(x-3\right)\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}}\)
\(\Leftrightarrow2\le x\le3\)
Vậy \(A_{min}=4\Leftrightarrow2\le x\le3\)
cách 1: đặt a = x+2 ,=> A= (a-3)4+(a+3)4-120
tách ra là ổn
cách 2 : áp dụng BĐT bunyakovsky:
(1+1)(a2+b2)\(\ge\)(a+b)2=> a2+b2\(\ge\)\(\frac{\left(a+b\right)^2}{2}\)(dấu = xảy ra khi a=b)
A= (x-1)4+(x+5)4-120=(1-x)4+(x+5)4-120\(\ge\)\(\frac{1}{2}\left[\left(x-1\right)^2+\left(x+5\right)^2\right]^2-120\)
\(A\ge\frac{1}{2}\left(2x^2+8x+26\right)^2-120=\frac{1}{2}\left[2\left(x+2\right)^2+18\right]^2-120\ge\frac{18^2}{2}-120=42\)
dấu = xảy ra khi 1-x=x+5 và x+2=0
=> x=-2
Ta có: (x-1)\(^4\) \(\ge\) 0 với mọi x
(x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) -120 \(\ge\) -120 với mọi x
=> A\(\ge\) -120
=> GTNN của A bằng -120
\(A=x\left(x+1\right)\left(x^2+x-4\right)\)
\(=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=k\)
Lúc đó \(A=k\left(k-4\right)\)
\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)
(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x^2+x-2=0\)
Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
a) GTNN = 0 khi x = -1
b) GTNN = 503 khi x =0
b sai min=39 khi x=-2