\(1:\left(\frac{x+2}{x\sqrt{x}+1}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mk nhanh nha.mk cần gấp...........ai nhanh mak đúng mk k cho

cô ơi, giúp e bài này vs ak...e cảm ơn cô nhiều lắm

17 tháng 6 2021

a, \(P=\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b, Vì x > 1, g/s : Thay x = 4 vào P ta được : 

\(\frac{\sqrt{4}+1}{\sqrt{4}-1}=\frac{3}{1}=3\)

Thay x = 4 vào căn P ta được : \(\sqrt{\frac{\sqrt{4}+1}{\sqrt{4}-1}}=\sqrt{3}\)

mà \(3>\sqrt{3}\Rightarrow P>\sqrt{P}\)với x > 1 

7 tháng 10 2017

a. ĐKXĐ: \(x>0,x\ne1\)

A=Đề\(=\left[\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{-1}{\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)}\)\(=\frac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

Đề sai hả bạn ?

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

8 tháng 8 2016

a/ đkxđ \(\hept{\begin{cases}\sqrt{1+x}-\sqrt{1-x}\ne0\\\sqrt{1-x^2}-1+x\ne0\\x\ne0\end{cases}}va\hept{\begin{cases}1+x>0\\1-x>0\\1-x^2>0\end{cases}va}\sqrt{\frac{1}{x^2}-1}>0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\\-1< x< 1\end{cases}}vax>0\)

b  =/\(\left[\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{1-x}{\sqrt{1-x^2}-1+x}\right].\left[\frac{\sqrt{1-x^2}}{x}-\frac{1}{x}\right]\)=

\(\left[\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{1-x}{\sqrt{1-x}\left[\sqrt{1+x}-\sqrt{1-x}\right]}\right].\frac{\sqrt{1-x^2}-1}{x}\)=\(\left[\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right].\frac{\sqrt{1-x^2}-1}{x}\)=\(\frac{\left[\sqrt{1+x}+\sqrt{1-x}\right]\left[\sqrt{1-x^2}-1\right]}{\left[\sqrt{1+x}-\sqrt{1-x}\right].x}\)

c/ khi x=1/2 thi A=\(\frac{\left[\sqrt{1+\frac{1}{2}}+\sqrt{1-\frac{1}{2}}\right]\left[\sqrt{1-\frac{1}{4}}-1\right]}{\left[\sqrt{1+\frac{1}{2}}-\sqrt{1-\frac{1}{2}}\right].\frac{1}{2}}=-1\)

3 tháng 8 2018

a/ đkxđ

√1+x−√1−x≠0
√1−x2−1+x≠0
x≠0

va{

1+x>0
1−x>0
1−x2>0

va√1x2 −1>0

x≠0
x≠1
−1<x<1

vax>0

b  =/[√1+x√1+x−√1−x +1−x√1−x2−1+x ].[√1−x2x −1x ]=

[√1+x√1+x−√1−x +1−x√1−x[√1+x−√1−x] ].√1−x2−1x =[√1+x√1+x−√1−x +√1−x√1+x−√1−x ].√1−x2−1x =[√1+x+√1−x][√1−x2−1][√1+x−√1−x].x 

c/ khi x=1/2 thi A=[√1+12 +√1−12 ][√1−14 −1][√1+12 −√1−12 ].12  =−1

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0