Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử ta kẻ My \(\perp\)BC cắt Bx tại A'
Kết hợp với ^CBx = 450 suy ra \(\Delta\)A'MB vuông cân tại M
=> \(\frac{BM}{BA'}=\frac{1}{\sqrt{2}}\)Lại có \(\frac{BM}{BA}=\frac{1}{\sqrt{2}}\)nên \(BA'\equiv BA\)
\(\Rightarrow A'\equiv A\)nên AM \(\perp\)BC
Kết hợp với CI \(\perp\)AD suy ra N là trực tâm của \(\Delta\)ADC
Suy ra DN \(\perp\)AC (đpcm)
b) Xét \(\Delta\)AMB và \(\Delta\)AMC có:
MB = MC (gt)
^AMB = ^AMC ( = 900)
AM : cạnh chung
Do đó \(\Delta\)AMB = \(\Delta\)AMC (c.g.c)
=> AB = AC (hai cạnh tương ứng) và ^MBA = ^MCA (=450) => ^BAC = 900
Xét \(\Delta\)AIC (^AIC = 900) và \(\Delta\)AHB (^AHB = 900) có:
AB = AC (cmt)
^ABH = ^ACI (cùng phụ với ^BAH)
Do đó \(\Delta\)CIA = \(\Delta\)AHB (ch-gn)
=> AI = BH
=> BH2 + CI2 = AI2 +CI2 =AC2 (không đổi)
c) Xét \(\Delta\)BHM và \(\Delta\)AIM có:
AI = BH (cmt)
^HBM = ^IAM (cùng phụ với hai cặp góc đối đỉnh là ^BDH và ^ADM)
BM = AM (cmt)
Do đó \(\Delta\)BHM = \(\Delta\)AIM
=> HM = IM (1) và ^HMB = ^IMA
Mà ^IMA + ^IMD = 900 nên ^HMB + ^IMD = 900 (2)
Từ (1) và (2) suy ra \(\Delta\)HMI vuông cân tại M => ^HIM = 450
Lại có ^HIC = 900 nên IM là phân giác của ^HIC
Vậy tia phân giác của góc HIC luôn đi qua một điểm cố định M (đpcm)
a: Xét ΔDAC vuông tại A và ΔCBE vuông tại B có
DA=CB
AC=BE
Do đó: ΔDAC=ΔCBE
b: ΔDAC=ΔCBE
=>\(\widehat{DCA}=\widehat{CEB}\)
=>\(\widehat{DCA}+\widehat{ECB}=90^0\)
\(\widehat{DCA}+\widehat{DCE}+\widehat{BCE}=180^0\)(hai góc kề bù)
=>\(\widehat{DCE}+90^0=180^0\)
=>\(\widehat{DCE}=90^0\)
=>CD\(\perp\)CE
a)Ta có:
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\Rightarrow\frac{3+xy}{3x}=\frac{2}{5}\)
\(\Rightarrow5\left(3+xy\right)=2.3x\)
\(\Rightarrow15+5xy=6x\)
\(\Rightarrow15=6x-5xy=x\left(6-5y\right)\)
Ta có bảng sau:
Vậy \(\left\{{}\begin{matrix}x=15\\y=1\end{matrix}\right.\) thỏa mãn đề bài