K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

b ) (a - 1)(a + 3) âm <=> (a - 1)(a + 3) > 0 => a - 1 và a + 3 trái dấu

Mặt khác : a + 3 > a - 1 => a + 3 > 0 và a - 1 < 0

<=> a > - 3 và a < 1

Vậy - 3 < a < 1

b ) x2 - 3x > 0 <=> x2 > 3x => x > 3

Vậy với x > 3 thì x2 - 3x dương

21 tháng 6 2016

bài 1:

\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)

\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)

Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm

\(\Leftrightarrow\frac{1}{3}-x< 0\)

\(\Leftrightarrow x>\frac{1}{3}\)

Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương

bài 2:

a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0

+)Nếu x2-2<0

=>x2<2

=>x<\(\sqrt{2}\)

+)Nếu 5x<0

=>x<0

Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm

b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm

=>x-2<0 hoặc x-6<0

+)Nếu x-2<0

=>x<2

+)Nếu x-6<0

=>x<6

Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm

1 tháng 2 2017

a. để A dương thì \(2x-1\ge0\Rightarrow2x\ge1\Rightarrow x\ge\frac{1}{2}\)
b. Để B âm thì \(9-2c< 0\Rightarrow9< 2c\Rightarrow c>\frac{9}{2}\)

19 tháng 2 2016

a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên

và x2 luôn tự nhiên => 5x âm

=>  GTTĐ của x2 < GTTĐ của 5x

=> x < 5

=> x thuộc {4; 3; 2; 1;....}

Vậy....

15 tháng 7 2016

câu hỏi này tôi xem xét lại sau

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok