Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
a^4 + b^4 + c^4 + d^4 = 4abcd
<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)
<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)
1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
Lời giải:
a)
$a+b+c=0\Leftrightarrow (a+b+c)^2=0$
$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$
$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$
Mà $a^2\geq 0$
Do đó: $a^2(ab+bc+ac)\leq 0$
$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)
Dấu "=" xảy ra khi $a=0$
b)
Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)
Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$
$\Leftrightarrow (3c+3)^2\geq 9c^2$
$\Leftrightarrow (c+1)^2\geq c^2$
$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)
Vậy.......
Vì \(1\ge a,b,c\ge0\)\(\Rightarrow b^2\le b;c^3\le c\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\) (1)
Vì \(1\ge a,b,c\ge0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1\le0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà \(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow-abc\le0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1\) (2)
Từ (1) và (2) \(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
a) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\left(1\right)\)
Ta thấy \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b\\\left(a-1\right)^2\ge0;\forall a,b\\\left(b-1\right)^2\ge0;\forall a,b\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0;\forall a,b\)
\(\Rightarrow\left(1\right)\)luôn đúng
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\a=1\\b=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy... ( bạn ko cần phải ghi dấu bằng xảy ra cũng đúng nhé )
b) Xét hieuj \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=0\)( vì a+b+c=0 )
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
cảm ơn bạn nhiều ^_^