Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy:
\(\dfrac{1}{2}=\dfrac{1}{1!+1},\dfrac{1}{3}=\dfrac{1}{2!+1},\dfrac{1}{7}=\dfrac{1}{3!+1},\dfrac{1}{25}=\dfrac{1}{4!+1}\)
\(\Rightarrow\)Số tiếp theo sẽ là \(\dfrac{1}{5!+1}=\dfrac{1}{121}\)
Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)
Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.
Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)
Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)
Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)
Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.
Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9
Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)
Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.
Tới đây bạn tự làm nhé ^^
Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^
E lười thí mồ =)))
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có:
\(\frac{a}{d}=\frac{bk}{d}=\frac{bkk}{dk}=\frac{bk^2}{c}=\frac{b.k^2.k}{ck}=\frac{b.k^3}{b}=k^3\) (1)
\(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\left[\frac{k\left(b+c+d\right)}{b+c+d}\right]^3=k^3\) (2)
Từ (1) và (2) suy ra \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
A B C D E F M N P 1 2 2 1 1 2 1 1 1 2 2 2
\(\Delta\)ABC đều =>AB=BC=CA và \(\widehat{ABC}=\widehat{BAC}=\widehat{ACB}\)
Xét \(\Delta\)ACE và \(\Delta\)BAD có:
AC=AB
\(\widehat{BAC}=\widehat{ABC}\)
AE=BD(=\(\dfrac{1}{3}\) độ dài cạnh \(\Delta\)ABC)
=>\(\Delta\)ACE=\(\Delta\)BAD(c.g.c)
=>\(\widehat{C_1}=\widehat{A_1}\)
Chứng minh tương tự ta có:\(\widehat{A_1}=\widehat{B_1}\)
=>\(\widehat{A_1}=\widehat{B_1}\)\(=\widehat{C_1}\)(1)
Mà \(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}=\widehat{C_1}+\widehat{C_2}\left(=60^o\right)\)
=>\(\widehat{A_2}=\widehat{B_2}=\widehat{C_2}\)(2)
Lại có:\(\widehat{F_1}=\widehat{B_1}+\widehat{C_2}\)(t/c góc ngoài)(3)
\(\widehat{N_1}=\widehat{B_2}+\widehat{A_1}\)(t/c góc ngoài)(4)
\(\widehat{M_1}=\widehat{A_2}+\widehat{C_1}\)(t/c góc ngoài)(5)
Từ (1);(2);(3);(4) và (5)=>\(\widehat{M_1}=\widehat{N_1}=\widehat{P}_1\)
Mà: \(\widehat{M_1}=\widehat{M_2};\widehat{N_1}=\widehat{N_2};\widehat{P_1}=\widehat{P_2}\)(các góc đối đỉnh)
=>\(\widehat{M_2}=\widehat{N_2}=\widehat{P}_2\)
=>\(\Delta MNP\)đều(đpcm)
Ta có :
\(\left(x^m\right)^n\)
\(=x^m.x^m....x^m\) ( n thừa số xm )
\(=x^{m+m+....+m}\) n thừa số m
\(=x^{m.n}\)
=> \(\left(x^m\right)^n\)\(=x^{m.n}\) ( đpcm )
Giải:
Ta có:
\(x^{m.n}=\left(x.x.x...x\right).\left(x.x.x...x\right)=\left(x^m\right)^n\)
m số x n số x
\(\Rightarrowđpcm\)
Theo mk nghĩ là như v
tui đõi nịk rùi nha
bạn vào giải lại đi giông đề bữa hôm tui thi lắm
Bn cx đg dần biến bản thân mk thành phần tử thất bại của hoc24 như họ đấy !!!