K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

\(2x+y=6\)

\(\Rightarrow y=6-2x\)

\(\text{Thế vào phương trình ta dc:}\)

\(4x^2+\left(6-2x\right)^2\)

\(=4x^2+36-24x+4x^2\)

\(=8x^2-24x+36\)

\(\Leftrightarrow4x\left(2x-6\right)+36\)

Rồi sao nữa quên ùi

12 tháng 4 2017

ta có : \(2x+y=6\Leftrightarrow y=6-2y\)

thay vào A, ta có:

\(A=4x^2+\left(6-2x\right)^2\)

\(A=8\left(x^2-3x+2,25\right)+18\)

\(A=8\left(x-1,5\right)^2+18\)

\(\Rightarrow A\ge18\)

8 tháng 3 2017

Bài này không khó cách làm thế này:

x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4

= (x + y +1 )2 +4

Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4

Dấu "=" xảy ra khi và chỉ khi x=y=-0,5

Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.

Xong rồi đó. Có gì sai sót các bạn góp ý nhé.

8 tháng 3 2017

x2 + y2 + 2x + 2y + 2xy + 5

= x2 + y2 + 12 + 2x + 2y + 2xy + 4

= (x + y + 1)2 + 4 \(\ge\) 4

8 tháng 1 2017

A=(x+y+1)(x+y+1)+4

A=(x+y+1)2+4

Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp

8 tháng 1 2017

ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)

18 tháng 2 2016

 x^2-y^2=2=(x-y).(x+y)

ta co bang

x-y   1   2    -1    -2

y+x   2   1     -2    -1

x      1.5          -1.5

y       0.5             -0.5

NV
16 tháng 7 2020

Let \(A=x^2+2y^2+2x-4\)

From condition, we have: \(y^2=7-x^2\)

Therefore: \(A=x^2+2\left(7-x^2\right)+2x-4\)

\(\Rightarrow A=-x^2+2x+10=-\left(x-1\right)^2+11\le11\)

\(\Rightarrow A_{max}=11\) when \(\left\{{}\begin{matrix}x=1\\y^2=6\end{matrix}\right.\)

17 tháng 2 2020

We have \(\hept{\begin{cases}5x+y-2z=37\left(1\right)\\3x-y+2z=11\end{cases}}\)

\(\Leftrightarrow8x=48\)

\(\Leftrightarrow x=6\)

If x=6 then (1) will become \(y-2z=7\)

\(\Rightarrow2y-4z=14\)

\(\Rightarrow x+2y-2z=20\)

Lesson 1: analyzing the polynomial factors.Notes + 2 x-1x 3 + 6x2 + 11x + 6x 4 + 2 x 2-3AB + ac + b2 + 2bc + c2A3-b3 + c3 + 3abcLesson 2: for functions: search conditions of x to A means.A shortening.Computer x to A < 1.Post 3: prove the inequality:For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.For a, b, c are the sidelengths of the triangle. Proof that:Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0Lesson 4: solve the equation:x 2-3 x + 2 + | x-1 | = 0Lesson 5: find...
Đọc tiếp

Lesson 1: analyzing the polynomial factors.

Notes + 2 x-1
x 3 + 6x2 + 11x + 6
x 4 + 2 x 2-3
AB + ac + b2 + 2bc + c2
A3-b3 + c3 + 3abc
Lesson 2: for functions: 

search conditions of x to A means.
A shortening.
Computer x to A < 1.
Post 3: prove the inequality:

For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.
For a, b, c are the sidelengths of the triangle. Proof that:


Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0
Lesson 4: solve the equation:

x 2-3 x + 2 + | x-1 | = 0


Lesson 5: find the largest and smallest value (if any)

A = x 2-2 x + 5
B =-2 x 2-4 x + 1.
C = 
Lesson 6: calculate the value of expression.

Know a – b = 7 feature: A = (a + 1) a2-b2 (b-1) + ab-3ab (a-b + 1)
For three numbers a, b, c is not zero catches up deals for equality: 
Computer: P = 

Article 7: proof that

8351634 + 8241142 divisible 26.
A = n3 + 6n2-19n-24 divisible by 6.
B = (10n-9n-1) divisible 27 with n in N *.
Article 8:

In the motorcycle race three cars depart at once. The second car in a one-hour run slower than the first car 15 km and 3 km third cars. rapidly should the destination more slowly the first car 12 minutes and the third car earlier today. No stops along the way. Calculate the speed of each car, race distance and the time each car

0