K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)

\(A=\left(x-3\right)-\left(x+3\right)\)

\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)

                                   \(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)

Vậy ko có giá trị của x.

11 tháng 6 2018

mk ko biết đâu

mk mới hok lớp 5 thui

chúc bạn hok tốt nhé

kb với mk nha

25 tháng 7 2015

=\(\left|x-3\right|-\left|x+3\right|\)

*x>0

=x-3-x+3

=0

*x<0

=3-x-3+x

=0

29 tháng 5 2021

\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)

\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)

b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)

\(TH1:x-3>=0\)

\(< =>x+3>=0\)

\(\left|x-3\right|-\left|x+3\right|=1\)

\(x-3-x-3=1\)

\(-6=1\)(loại)

\(TH2:x-3< =0\)

\(x+3>=0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x-x-3\)

\(-2x=1\)

\(x=-\frac{1}{2}\left(TM\right)\)

\(TH3:x-3< =0\)

\(x+3< =0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x+X+3=1\)

\(6=1\)(loại)

\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

d) Để A>0 thì \(\sqrt{x}-2>0\)

hay x>4

25 tháng 10 2020

a) Ta có:

\(A=2x+\sqrt{x^2-6x+9}\)

\(A=2x+\sqrt{\left(x-3\right)^2}\)

\(A=2x+\left|x-3\right|\)

Nếu \(x< 3\) thì: \(A=2x+3-x=x+3\)

Nếu \(x\ge3\) thì: \(A=2x+x-3=3x-3\)

b) Ta có: \(\left|x\right|=5\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

Nếu x = 5: \(A=3\cdot5-3=12\)

Nếu x = -5: \(A=-5+3=-2\)

c) Ta có: \(A=2\Leftrightarrow\orbr{\begin{cases}x+3=2\\3x-3=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

25 tháng 10 2020

a) \(A=2x+\sqrt{x^2-6x+9}\)

\(=2x+\sqrt{\left(x-3\right)^2}\)

\(=2x+\left|x-3\right|\)

Với x ≥ 3 => A = 2x + x - 3 = 3x - 3

Với x < 3 => A = 2x + 3 - x = x + 3

b) | x | = 5 => x = ±5

Với x = 5 > 3 => A = 3.5 - 3 = 12

Với x = -5 < 3 => A = -5 + 3 = -2

c) A = 2 

⇔ 2x + | x - 3 | = 2

⇔ | x - 3 | = 2 - 2x (*)

Với x ≥ 3 

(*) ⇔ x - 3 = 2 - 2x

     ⇔ x + 3x = 2 + 3

     ⇔ 4x = 5

     ⇔ x = 5/4 ( ktm )

Với x < 3

(*) ⇔ 3 - x = 2 - 2x

     ⇔ -x + 2x = 2 - 3

     ⇔ x = -1 ( tm )

Vậy x = -1

27 tháng 10 2023

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)