K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

b,\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)  \(=\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}+4\sqrt{8\sqrt{3}}\)

\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}\)

\(=0\)

d,\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{2}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})\)

\(\sqrt2A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)

\(\sqrt2A=\sqrt{(\sqrt5-1)^2}\) \(+\sqrt{(\sqrt5+1)^2}\)    \(=\sqrt5-1 +\sqrt5+1=2\sqrt5\)

\(\Rightarrow A=\dfrac{2\sqrt5}{\sqrt2}\) \(=\sqrt{10}\)

a. \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)

\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\) 

\(=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{3\sqrt{5}-3+5-\sqrt{5}}{2\left(\sqrt{5}+1\right)}\)  

\(=\frac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=\frac{2\left(\sqrt{5}+1\right)}{2\left(\sqrt{5}+1\right)}=1\)

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

NV
18 tháng 6 2019

a/ \(\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)

b/ \(\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)

c/ \(\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\frac{\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=2-\sqrt{3}+2+\sqrt{3}=4\)

d/ \(\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\frac{\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{8}=\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=1\)

e/ \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{\sqrt{2}\left(3-\sqrt{3}+3+\sqrt{3}\right)}{6}=\sqrt{2}\)

f/ \(\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)

19 tháng 6 2017

Phần d mình sửa lại đề nha : \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{4}-4}\)

11 tháng 5 2018

bn xem lại đề câu d đi sao mẫu lại bằng 0 rồi

NV
25 tháng 9 2019

\(A=\sqrt{3}+\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\sqrt{3}+\sqrt{3}\left(\sqrt{3}-1\right)=3\)

\(B=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\sqrt{3}-2-\sqrt{3}=-2\)

\(C=\frac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\sqrt{5}-\sqrt{3}\)

\(C=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

\(D=\frac{2}{\left|2-\sqrt{5}\right|}-\frac{2}{\left|2+\sqrt{5}\right|}=\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}=\frac{2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)

\(D=2\sqrt{5}+4-2\sqrt{5}+4=8\)

\(E=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}-\sqrt{2}=0\)

3 tháng 7 2019

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)

3 tháng 7 2019

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)

a) Ta có: \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)

\(=\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{10-10\sqrt{5}+2\sqrt{10}-10\sqrt{2}+8\sqrt{5}+8\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}\left(\sqrt{5}-1\right)+2\sqrt{2}\left(\sqrt{5}-1\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{2\cdot\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{2}{-1}=-2\)

b) Ta có: \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\frac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}\)

\(=-\frac{3}{\sqrt{6}}=\frac{-\sqrt{3}}{\sqrt{2}}\)

c) Ta có: \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)

\(=\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\sqrt{\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\frac{7-4\sqrt{3}}{4-3}}+\sqrt{\frac{7+4\sqrt{3}}{4-3}}\)

\(=\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{4+2\cdot2\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}+2+\sqrt{3}\)(Vì \(2>\sqrt{3}>0\))

\(=4\)

d) Ta có: \(\frac{\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)

\(=\frac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\frac{\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(6+2\sqrt{5}\right)}{4\left(\sqrt{5}+1\right)}\)

\(=\frac{\left|\sqrt{5}-1\right|\cdot\left(5+2\cdot\sqrt{5}\cdot1+1\right)}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)

\(=\frac{\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)^2}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)(Vì \(\sqrt{5}>1\))

\(=\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{4}\)

\(=\frac{5-1}{4}=\frac{4}{4}=1\)

e) Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2+\sqrt{3}}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2}+\sqrt{2-\sqrt{3}}\right)}\)

\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-\left(2+\sqrt{3}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-\left(2-\sqrt{3}\right)}\)

\(=\frac{2-\sqrt{4+2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2-\sqrt{3}\right)}+\frac{2+\sqrt{4-2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2+\sqrt{3}\right)}\)

\(=\frac{2-\sqrt{3+2\cdot\sqrt{3}\cdot1+1}}{-\sqrt{6}}+\frac{2+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{6}}\)

\(=\frac{-2+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{6}}+\frac{2+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}}\)

\(=\frac{\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|}{\sqrt{6}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{6}}\)

\(=\frac{2\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{12}}{\sqrt{6}}=\sqrt{2}\)

f) Ta có: \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)

\(=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)

\(=\frac{9-4\sqrt{5}}{2\cdot\left(\sqrt{5}-2\right)}\)

\(=\frac{5-2\cdot\sqrt{5}\cdot2+2}{2\cdot\left(\sqrt{5}-2\right)}\)

\(=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}\)

\(=\frac{\sqrt{5}-2}{2}\)