Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right].\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left[\dfrac{\sqrt{b}.\sqrt{b}-\sqrt{a}.\sqrt{a}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
=\(\left[\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{\left(b-a\right).\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\)
=b-a
Câu a
\(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right):\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{1}\)
\(=a-b\)
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b) đề sai rồi nha
c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)
\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)
a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)
b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)
c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)
d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)
\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
Bài 3 : Áp dụng BĐT Bu - nhi - a cốp xki ta có :
\(A=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của A là 2 . Dấu \("="\) xảy ra khi \(x=3\)
\(B=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Vậy GTLN của B là 4 . Dấu \("="\) xảy ra khi \(x=2\)
\(C=\sqrt{x}+\sqrt{2-x}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của C là 2 . Dấu \("="\) xảy ra khi \(x=1\)
Bài 2:
a .\(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\("="\Leftrightarrow a=b\)
b. \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\Leftrightarrow a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\left(a,b>0\right)\)
\(c.a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\) ( t nghĩ là > thôi )
d. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
\("="\Leftrightarrow a=b=c\)
e. \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+b+2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a+2b-a-b-2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\) ( đúng)
\("="\Leftrightarrow a=b\)
\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)
BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)
Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)
b) Áp dụng BDT Cô-si có:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)
b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)
\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab}+ab+b\sqrt{\dfrac{b}{a}\cdot ab}\)
\(=a^2+ab+b^2\)