Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
a: ĐKXD: 3x-1>=0
hay x>=1/3
b: ĐKXĐ: x2-2>=0
hay \(\left[{}\begin{matrix}x>=\sqrt{2}\\x< =-\sqrt{2}\end{matrix}\right.\)
d: ĐKXĐ: 2x-15>0
hay x>15/2
e: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
1: ĐKXĐ: 6-3x>=0 và x<>3
=>x<=2
2: ĐKXĐ: 3-2x>0
=>2x<3
hay x<3/2
3: ĐKXĐ: x>=0
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
a) Để biểu thức có nghĩa
\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{9}{4}\ge0\)
\(\Leftrightarrow\dfrac{3}{2}x\ge\dfrac{9}{4}\)
\(\Leftrightarrow x\ge\dfrac{3}{2}\)
b) Để biểu thức có nghĩa
\(\Leftrightarrow\dfrac{5}{5-3x}\ge0\)
\(\Leftrightarrow5-3x>0\) (Vì 5 > 0)
\(\Leftrightarrow-3x>-5\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \dfrac{5}{3}\)
c) Để biểu thức có nghĩa
\(\Leftrightarrow\dfrac{3}{4-x^2}\ge0\)
\(\Leftrightarrow4-x^2>0\) (Vì 3 > 0)
\(\Leftrightarrow-x^2>-4\)
\(\Leftrightarrow x^2< 4\)
\(\Leftrightarrow x< -2\)
d) Để biểu thức có nghĩa thì
\(x^2+3x+2\ge0\)
\(\Leftrightarrow x^2+2x+x+2\ge0\)
\(\Leftrightarrow x\left(x+2\right)+\left(x+2\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\\x+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x< -2\end{matrix}\right.\\x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -2\\x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)
Vậy ...
a) Để \(\sqrt{3x-5}\) có nghĩa thì
3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)
b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì
\(\dfrac{-3}{4-5x}\ge0\)
Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)
Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)
c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì
\(\left(x-1\right)\left(x-4\right)\ge0\)
Ta có bảng xét dấu :
x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +
=> x \(\le1\) Hoặc x \(\ge4\)
e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)
\(a,\sqrt{2x-1}\)
\(\sqrt{2x-1}\) có nghĩa khi:
\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)
\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)
\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:
\(x+1\ge0\\ \Leftrightarrow x\ge-1\)
\(c,\sqrt{3x^2}\)
\(\forall x\in Rvì3x^2\ge0\)
\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)
\(e,\sqrt{\dfrac{-1}{x^2+2}}\)
Không có nghĩa \(\forall x\in R\)
\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)
\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:
\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)
\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)
\(x\ge\dfrac{1}{10}\)
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)
Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)
b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.
Vậy B có nghĩa với mọi x
c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)
Vậy C có nghĩa khi 0 < x < 2
d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.
Vậy không có giá trị của x để D có nghĩa
\(a,ĐK:\dfrac{3x-2}{5}\ge0\Leftrightarrow3x-2\ge0\left(5>0\right)\Leftrightarrow x\ge\dfrac{2}{3}\\ b,ĐK:\dfrac{2x-3}{-3}\ge0\Leftrightarrow2x-3\le0\left(-3< 0\right)\Leftrightarrow x\le\dfrac{3}{2}\)