\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2.b}-\sqrt{a.b^2}\left(Vớia>0,b>0\right)\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2020

b, x-y+\(\sqrt{xy^2}\)-y\(^3\) =(x-y)+(\(\sqrt{xy^2}\)-\(\sqrt[3]{y^3}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\))+\(\sqrt{y^2}\)(\(\sqrt{ }x\)-\(\sqrt{y}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\)+\(\sqrt{y^2}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\)+y) (vì y>0).

13 tháng 10 2020

a, \(\sqrt{a^3}\)-\(\sqrt{b^3}\)+\(\sqrt{a^2b}\)-\(\sqrt{ab^2}\)

=(\(\sqrt{a^3}\)-\(\sqrt{b^3}\))+(\(\sqrt{a^2b}\)-\(\sqrt{ab^2}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+\(\sqrt{ab}\)+b)+\(\sqrt{ab}\)(\(\sqrt{a}\)-\(\sqrt{b}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+\(\sqrt{ab}\)+b+\(\sqrt{ab}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+2\(\sqrt{ab}\)+b). =(\(\sqrt{a}\)-\(\sqrt{b}\))(\(\sqrt{a}\)+\(\sqrt{b}\))\(^2\) =(a-b)(\(\sqrt{a}\)+\(\sqrt{b}\))

13 tháng 9 2018

\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)

\(C=-x\sqrt{x}+x+\sqrt{x}-1\)

\(D=x-\sqrt{x}+1\)

13 tháng 9 2018

có đáp án kĩ hơn không ạ ?

10 tháng 8 2015

\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)

\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)

29 tháng 7 2018

a)  \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)

b)  \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)

d)  \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

NV
19 tháng 9 2019

\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)

\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)

\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)

\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)