\(a\sqrt{a}\)+ \(b\sqrt{b}\)


K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}\)

=\(\frac{a+b+2\sqrt{ab}+a+b-2\sqrt{ab}}{a-b}=\frac{2\left(a+b\right)}{a-b}\)

b/\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

=\(\sqrt{a}+\sqrt{b}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)=\(\frac{a+b+2\sqrt{ab}+a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}=\frac{2a+2b+3\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

21 tháng 6 2017

đk : \(a\ge0;b\ge0;a\ne b\)

a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)

b) đk : \(a\ge0;b\ge0;a\ne b\)

\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)

= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)

21 tháng 9 2018

a)

\(\Leftrightarrow\left(\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+\sqrt{a}}\right)\)\(\Leftrightarrow\left(a-\sqrt{a}+1-\sqrt{a}\right):\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(a-2\sqrt{a}+1\right):\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2:\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
31 tháng 7 2019

\(A=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\)\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\)\(\left(\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)\)

\(=\left(\sqrt{a}+1\right)\left(-\sqrt{a}-1\right)\)

\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)=-\left(\sqrt{a}+1\right)^2\)

\(b,A=-a^2\Rightarrow-\left(\sqrt{a}+1\right)^2=a^2\)

\(\Leftrightarrow a=\sqrt{a}+1\Rightarrow a-\sqrt{a}-1=0\)

\(\Rightarrow4a-4\sqrt{a}-4=0\)

\(\Rightarrow4a-4\sqrt{a}+1-5=0\)

\(\Rightarrow\left(2\sqrt{a}-1\right)^2-\sqrt{5}^2=0\)

\(\Rightarrow\left(2\sqrt{a}-1+\sqrt{5}\right)\left(2\sqrt{a}-1-\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{a}=1-\sqrt{5}\\2\sqrt{a}=1+\sqrt{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=\frac{1-\sqrt{5}}{2}\\\sqrt{a}=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{\left(1-\sqrt{5}\right)^2}{4}\left(tm\right)\\a=\frac{\left(1+\sqrt{5}\right)^2}{4}\left(tm\right)\end{cases}}\)