Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√25x = 35
⇔5√x = 35
⇔√x = 7
⇔x = 49
b)√4x ≤ 162
⇔2√x ≤ 162
⇔√x ≤ 81
⇔x ≤ 6561
Suy ra : 0 ≤ x ≤ 6561
c)3√x = 12
⇔3√x = 2√3
⇔√x = 23√3
⇔x = (23√3)2
⇔x = −43
d) 2√x ≥ √10
⇔√x ≥ √102
⇔ x = 52
\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}=\sqrt{16.5}+\sqrt{9.5}+\sqrt{5}\)
\(=4\sqrt{5}+3\sqrt{5}+\sqrt{5}=8\sqrt{5}\)
\(B=\frac{5}{\sqrt{10}}+3,5\sqrt{40}=\sqrt{\frac{25}{10}}+3,5\sqrt{16.2,5}\)
\(=\sqrt{2,5}+3,5.4\sqrt{2,5}=15\sqrt{2,5}\)
\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)
\(=\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{100.3}}{10}-\sqrt{4.3}\)
\(=-\sqrt{3}-2+\sqrt{3}-2\sqrt{3}=-2\sqrt{3}-2\)
\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}=4\sqrt{x}+2x-4\sqrt{x}=2x\) ( do \(x\ge0\))
\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}.\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=\sqrt{a}\)
mk chỉnh đề
\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+4}\)
\(=\sqrt{25\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}\)
\(=5\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\)
\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}=\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}-\frac{2\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)
\(=\sqrt{3}-\sqrt{5}-\sqrt{5}-\sqrt{7}=\sqrt{3}-\sqrt{7}\)
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
b) \(\sqrt{4x}-\sqrt{9x}+\sqrt{25x}=2\sqrt{x}-3\sqrt{x}+5\sqrt{x}=4\sqrt{x}\)
Lời giải:
Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được
a)
\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)
b)
\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)
\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)
c)
\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
d)
\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)
\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
e)
\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)
g)
\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)
\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)
\(a,\Leftrightarrow4x\le26244\\ \Leftrightarrow x\le6561\)
\(b,\Leftrightarrow4x\ge10\\ \Leftrightarrow x\ge2.5\)
\(c,\Leftrightarrow9x=12\\ \Leftrightarrow x=\dfrac{4}{3}\)