\(\sqrt{4-5x}=12\)  tìm x

b)\(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

hay x=-28

b) Ta có: \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}+10=10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)

\(\Leftrightarrow3x=96\)

hay x=32

c) Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

NV
7 tháng 10 2019

Bạn tự tìm ĐKXĐ.

a/ \(\sqrt{4-5x}=12\Rightarrow4-5x=144\Rightarrow x=-28\)

b/ \(10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)

\(\Rightarrow\sqrt{3x}=4\sqrt{6}\Rightarrow\sqrt{x}=4\sqrt{2}\)

\(\Rightarrow x=32\)

c/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)

d/ \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

e/ \(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow\frac{4x+3}{x+1}=9\)

\(\Rightarrow4x+3=9x+9\Rightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)

f/ \(\sqrt{x-2}\le3\Rightarrow x-2\le9\Rightarrow2\le x\le11\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

17 tháng 7 2019

a) \(\sqrt{1-4x+4x^2}=5\)

<=> \(\sqrt{4x^2-4x+1}=5\)

<=> 4x2 - 4x + 1 = 52

<=> 4x2 - 4x + 1 = 25

<=> 4x2 - 4x + 1 - 25 = 0

<=> 4x2 - 4x - 24 = 0

<=> 4(x + 2)(x - 3) = 0

<=> x = -2 hoặc x = 3

 => x = -2 hoặc x = 3

b) \(\sqrt{4-5x}=12\)

<=> \(\sqrt{-5x+4}=12\)

<=> -5x + 4 = 122

<=> -5x + 4 = 144

<=> -5x = 144 - 4

<=> -5x = 140

<=> x = -28

=> x = -28

\(a,\sqrt{1-4x+4x^2}=5\)

\(\Rightarrow4x^2-4x+1=25\)

\(\Rightarrow4x^2-4x-24=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\)

\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

\(b,\sqrt{4-5x}=12\)

\(\Rightarrow4-5x=144\)

\(\Rightarrow5x=-140\)

\(\Rightarrow x=-28\)

28 tháng 10 2020

a) \(\sqrt{4-5x}=12\)

ĐK : x ≤ 4/5

Bình phương hai vế

⇔ \(4-5x=144\)

⇔ \(-5x=140\)

⇔ \(x=-28\)( tm )

b) \(\sqrt{1-4x+4x^2}=5\)

⇔ \(\sqrt{\left(1-2x\right)^2}=5\)

⇔ \(\left|1-2x\right|=5\)

⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐK : x ≥ -5

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\)( tm )

d)\(\sqrt{x-2}\le3\)

ĐK : x ≥ 2

⇔ \(x-2\le9\)

⇔ \(x\le11\)

Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

6 tháng 12 2018

a, \(\sqrt{x-5} = 3 \)

<=> x - 5 = 9

<=> x = 14.

b, \(\sqrt{4-5x}=12\)

<=> 4 - 5x = 144

<=> 5x = -140

<=> x = -28.

c, \(\sqrt{x^{2}-6x+9}=3\)

<=> x2 - 6x + 9 = 9

<=> (x - 3)2 = 9

TH1:

x - 3 = 3

<=> x = 6.

TH2:

x - 3 = -3

<=> x = 0

d, \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3} \sqrt{9x+45}=4\)

<=> \(2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5} = 4\)

<=> \(2\sqrt{x+5}\)= 4

<=> \(\sqrt{x+5}\) = 2

<=> x + 5 = 4

<=> x = -1.

6 tháng 12 2018

\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\)

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12