\(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(B=\sqrt{4+\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020
https://i.imgur.com/x0FcpLC.jpg
6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

3 tháng 9 2019

c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=A\\ \Rightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}+}\sqrt{6-\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\\ \Rightarrow A=\sqrt{2}.\sqrt{5}=\sqrt{10}\)

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)

4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

\(=-4\sqrt{3}\)