\(\sqrt{0,1}+\sqrt{0,9}+\sqrt{6,4}+\sqrt{0.4}+\sqrt{44,1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

\(\sqrt{10}A=\sqrt{10}\left(\sqrt{0,1}+\sqrt{0,9}+\sqrt{6,4}+\sqrt{0,4}+\sqrt{44,1}\right)\)

\(=\sqrt{1}+\sqrt{9}+\sqrt{64}+\sqrt{4}+\sqrt{441}\)

\(=1+3+8+2+21=35\)

\(\Rightarrow A=\frac{35}{\sqrt{10}}\)

3 tháng 10 2022

Căn 10 ở đâu ra z

10 tháng 7 2019

a) \(\sqrt{4,9.1350.0,6}=\frac{7\sqrt{10}}{10}.15\sqrt{6}.\frac{\sqrt{15}}{5}=63\)

b) \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}=\frac{5\sqrt{2}}{2}.\frac{\sqrt{5}}{5}.\frac{\sqrt{10}}{10}=\frac{1}{2}\)

c) \(\sqrt{\frac{484}{169}}=\frac{22}{13}\)

d) \(\sqrt{\frac{2}{288}}=\sqrt{\frac{1}{144}}=\frac{1}{12}\)

e) \(\frac{\sqrt{2^5}}{\sqrt{2^3}}=\sqrt{2^2}=2\)

14 tháng 5 2017

bấm máy tính là ra nha!

23 tháng 6 2018

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)

\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)

\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)

bài B tương tự 

15 tháng 8 2018

a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

16 tháng 8 2018

ok  mk giải dk tối qua rồi , dù s cx thanks

a: \(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1-1}\)

\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}\)

=0

b: \(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}=\dfrac{2\sqrt{7}}{2}=\sqrt{7}\)

c: \(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)

6 tháng 1 2018

Từ giả thiết, ta có 

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)

Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)

=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)

=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)

Vậy M=4

^_^

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)