\(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)

  • b)chứng minh:...">

    K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    1 tháng 3 2020

    a)Ta có:\(\sqrt{17}>\sqrt{16}\)

                 \(\sqrt{26}>\sqrt{25}\)

    \(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)

    \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

    Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)

    Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

    b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)

    \(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)

    \(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)

    24 tháng 7 2017

    Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...\)\(>\frac{1}{\sqrt{n}}\)

    Suy ra \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\)\(\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\)\(+...+\frac{1}{\sqrt{n}}=n.\frac{1}{\sqrt{n}}=\sqrt{n}\)

    13 tháng 2 2018

    a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)

                 \(\sqrt{26}\)>\(\sqrt{25}\)

    =>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1

    =>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1

    =>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)

    =>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

    b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)

        \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

    ....................................

       \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

    =>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))

    =>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)\(\frac{100}{10}\)=10 

    3 tháng 4 2018

    \(a)\) Ta có : 

    \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

    Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

    Chúc bạn học tốt ~ 

    2 tháng 12 2019

    Ta có:

    \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

    \(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

    \(.............\)

    \(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

    Khi đó:

    \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)

    \(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)

    \(=10\)

    2 tháng 12 2019

    Có BĐT sau:

    \(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)

    \(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

    \(\Leftrightarrow n^2-1< n^2\)

    \(\Leftrightarrow-1< 0\left(true!!\right)\)

    Áp dụng vào ta có:

    \(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)

    19 tháng 2 2018

          \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

    \(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

    \(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

    \(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

    \(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

    \(\Leftrightarrow\)\(x=-329\)

    19 tháng 2 2018

    Bài 1 : 

    \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

    \(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

    \(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

    \(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

    Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

    \(\Rightarrow\)\(x+329=0\)

    \(\Rightarrow\)\(x=-329\)

    Vậy \(x=-329\)