K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

1. Phát biểu các qui tắc nhân đơn thức với đa thức, nhân đa thức với đa thức.

- Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

- Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

2. Viết bảy hằng đẳng thức đáng nhớ.

Bảy hằng đẳng thức đáng nhớ:

\(1,\left(A+B\right)^2=A^2+2AB+B^2\)

\(2,\left(A-B\right)^2=A^2-2AB+B^2\)

\(3,A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(4,\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(5,\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(6,A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(6,A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

3. Khi nào thì đơn thức A chia hết cho đơn thức B?

Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

4. Khi nào thì đa thức A chia hết cho đơn thức B?

Khi từng hạng tử của đa thức A đều chia hết cho đơn thức B thì đa thức A chia hết cho đơn thức B.

5. Khi nào thì đa thức A chia hết cho đa thức B?

Khi đa thức A chia hết cho đa thức B được dư bằng 0 thì ta nói đa thức A chia hết cho đa thức B.

23 tháng 7 2019

Cách 1 : Chia \(f(x)\)cho x2 + x + 1

Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)

Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)

Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :

\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)

Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k +  1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

28 tháng 12 2022

3x3+10x2-5 chia hết cho 3x-1

<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1

<=> 9x2-5 chia hết cho 3x+1

<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1

<=> 3x-5 chia hết cho 3x+1

<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)

Vì 3x+1 chia 3 dư 1

<=> 3x+1 E {1;-2}

<=> 3x E {0;-3} <=> x E {0;-1}

28 tháng 12 2022

ủa -4 mà:))))))))?????????????????

11 tháng 3 2019

\(g\left(x\right)=x^3+x^2+x-4=x^2\left(x+1\right)+x+1-5\)

\(g\left(x\right)=\left(x+1\right)\left(x^2+1\right)-5\)

Vậy khi chia đa thức \(g\left(x\right)\) cho \(x+1\) có số dư là 5.

4 tháng 8 2019

 TL:

\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)

17 tháng 10 2021

Đáp án: 

Giải thích các bước giải:

a, phân tích thành nhân tử

M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
    = (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
    = [(a-b)^2 - c^2][(a+b)^2 - c^2]
    = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0

Y
5 tháng 7 2019

Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha

Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b

h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3

+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)

+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)

Y
5 tháng 7 2019

yêu cầu j z bn?

30 tháng 12 2015

bằng 15 bạn ơi. chắc chắn 100% đúng tick cho mình nha. thanks