Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định : D = R { 1 }. > 0, ∀x 1.
Hàm số đồng biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
b) Tập xác định : D = R { 1 }. < 0, ∀x 1.
Hàm số nghịch biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
c) Tập xác định : D = (-∞ ; -4] ∪ [5 ; +∞).
∀x ∈ (-∞ ; -4] ∪ [5 ; +∞).
Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +∞) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (-∞ ; -4) và đồng biến trên khoảng (5 ; +∞).
d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.
Hàm số nghịch biến trên các khoảng : (-∞ ; -3), (-3 ; 3), (3 ; +∞).
a) y' = 4x3 – 4x = 4x(x2 - 1) ; y' = 0 ⇔ 4x(x2 - 1) = 0 ⇔ x = 0, x = 1.
y'' = 12x2 - 4 .
y''(0) = -4 < 0 nên hàm số đạt cực đại tại x = 0, ycđ = y(0) = 1.
y''(1) = 8 > 0 nên hàm số đạt cực tiểu tại x = 1, yct = y(1) = 0.
b) y' = 2cos2x - 1 ;
y'' = -4sin2x .
nên hàm số đạt cực đại tại các điểm x = + kπ, ycđ = sin(+ k2π) - - kπ = - kπ , k ∈ Z.
nên hàm số đạt cực tiểu tại các điểm x =+ kπ, yct = sin(+ k2π) + - kπ = - kπ , k ∈ Z.
c) y = sinx + cosx = ; y' = ;
Do đó hàm số đạt cực đại tại các điểm , đạt cực tiểu tại các điểm
d) y' = 5x4 - 3x2 - 2 = (x2 - 1)(5x2 + 2) ; y' = 0 ⇔ x2 - 1 = 0 ⇔ x = ±1.
y'' = 20x3 - 6x.
y''(1) = 14 > 0 nên hàm số đạt cực tiểu tại x = 1, yct = y(1) = -1.
y''(-1) = -14 < 0 hàm số đạt cực đại tại x = -1, ycđ = y(-1) = 3.
a) Vì và ( hoặc và ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.
Vì và nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.
b) Hai tiệm cận đứng : ; tiệm cận ngang : .
c) Tiệm cận đứng : x = -1 ;
vì nên đồ thị hàm số không có tiệm cận ngang.
d) Hàm số xác định khi :
Vì ( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Vì nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.
a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);
y' = 0 ⇔ x = 0, x = ±2 .
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);
y' = 0 ⇔ x = 0, x = ±1 .
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.
Bảng biến thiên :
Đồ thị như hình bên.
d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.
Bảng biến thiên :
Đồ thị như hình bên.
.
a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;
Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2
Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12
Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.
Bảng biến thiên :
Đồ thị như hình bên.
a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )
Từ đồ thị ta thấy:
- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.
- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)
- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).
a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )
Từ đồ thị ta thấy:
- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm
- Với 1<m/2<5⇔ 2<m
- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1
Bạn kiểm tra lại đề. Và vào hoc 24 để đăng nhé!
Làm câu cuối:
TXĐ: \(x\in\)[ 0 ; + vô cùng )
\(y'=\frac{1}{2\sqrt{x}}-1=0\Leftrightarrow2\sqrt{x}=1\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)
Vẽ bảng biến thiên:
....
Từ bảng biên thiên:
Hàm số đồng biến trong khoảng ( 0 ; 1/4 )
Hàm số nghịch biên trong khoảng ( 1/4 ; + dương vô cùng)
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
a) y′=6x2+6x−36=6(x2+x−6)y′=6x2+6x−36=6(x2+x−6)
y’= 0 ⇔ x2+ x – 6= 0 ⇔ x=2; x=-3
Bảng biến thiên :
Hàm số đạt cực đại tại x = -3 , ycđ = y(-3) = 71
Hàm số đạt cực tiểu tại x = 2 , y(ct) = y(2) = -54
b) y’ = 4x3 + 4x = 4x(x2 + 1); y’ = 0 ⇔ x = 0.
Bảng biến thiên :
Hàm số đạt cực tiểu tại x = 0 , y(ct) = y(0) = -3
c) Tập xác định : D = R\{0}
Bảng biến thiên :
Hàm số đạt cực đại tại x = -1 , ycđ = y(-1) = -2 ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 2.
d) Tập xác định : D = R.
y’ = 3x2(1 – x)2 + x3 . 2(1 – x)(-1) = x2 (1 – x)[3(1 – x) - 2x] = x2 (x – 1)(5x – 3) .
y’ = 0 ⇔ x = 0, x =, x = 1.
Bảng biến thiên :
Hàm số đạt cực đại tại x = , ycđ = = ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 0 .
e) Tập xác định : D = R.
Hàm số đạt cực tiểu tại
fhghfvfdfvrf
lon me may beo