Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R
+ y' = 2cos2x – 1;
+ y" = -4.sin2x
⇒ (k ∈ Z) là các điểm cực đại của hàm số.
⇒ (k ∈ Z) là các điểm cực tiểu của hàm số.
TXĐ: D = R \ {0}
y' = 0 ⇔ x = ±1
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = -1; yCĐ = -2;
hàm số đạt cực tiểu tại x = 1; yCT = 2.
1. TXĐ: D = R
2. f’(x) = 3x^2 – 3. Cho f’(x) = 0 ⇔ x = 1 hoặc x = -1.
3. Ta có bảng biến thiên:
Hàm số đạt cực đại tại x = -1 và giá trị cực đại là 2
Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu là -2.
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại của hàm số.
y"(1) = 8 > 0 ⇒ x = 1 là điểm cực tiểu của hàm số.
y"(-1) = 8 > 0 ⇒ x = -1 là điểm cực tiểu của hàm số.
TXĐ: D = R
y' = 6x2 + 6x - 36
y' = 0 ⇔ x = -3 hoặc x = 2
Bảng biến thiên:
Kết luận :
Hàm số đạt cực đại tại x = -3 ; yCĐ = 71
Hàm số đạt cực tiểu tại x = 2; yCT = -54.
TXĐ: D = R
+ y’ = cos x – sin x.
+ y’’ = -sin x – cos x =
⇒ là các điểm cực đại của hàm số.
⇒ là các điểm cực tiểu của hàm số.
a) y' = 4x3 – 4x = 4x(x2 - 1) ; y' = 0 ⇔ 4x(x2 - 1) = 0 ⇔ x = 0, x = 1.
y'' = 12x2 - 4 .
y''(0) = -4 < 0 nên hàm số đạt cực đại tại x = 0, ycđ = y(0) = 1.
y''(1) = 8 > 0 nên hàm số đạt cực tiểu tại x = 1, yct = y(1) = 0.
b) y' = 2cos2x - 1 ;
y'' = -4sin2x .
nên hàm số đạt cực đại tại các điểm x = + kπ, ycđ = sin(+ k2π) - - kπ = - kπ , k ∈ Z.
nên hàm số đạt cực tiểu tại các điểm x =+ kπ, yct = sin(+ k2π) + - kπ = - kπ , k ∈ Z.
c) y = sinx + cosx = ; y' = ;
Do đó hàm số đạt cực đại tại các điểm , đạt cực tiểu tại các điểm
d) y' = 5x4 - 3x2 - 2 = (x2 - 1)(5x2 + 2) ; y' = 0 ⇔ x2 - 1 = 0 ⇔ x = ±1.
y'' = 20x3 - 6x.
y''(1) = 14 > 0 nên hàm số đạt cực tiểu tại x = 1, yct = y(1) = -1.
y''(-1) = -14 < 0 hàm số đạt cực đại tại x = -1, ycđ = y(-1) = 3.
TXĐ: D = R
y"(-1) = -20 + 6 = -14 < 0
⇒ x = -1 là điểm cực đại của hàm số.
y"(1) = 20 – 6 = 14 > 0
⇒ x = 1 là điểm cực tiểu của hàm số.