K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\left(8y^3+8\right):\left(4y^2-4y+4\right)\)

\(=[\left(2y\right)^3+2^3]:\left(4y^2-4y+4\right)\)

\(=\left(2y+2\right).[\left(2y\right)^2-2y.2+2^2]:\left(4y^2-4y+4\right)\)

\(=\left(2y+2\right).\left(4y^2-4y+4\right):\left(4y^2-4y+4\right)\)

\(=2y+2\)

15 tháng 8 2021

 (2x4-8x2+8) : (4-2x2)

=  2(x4-4x2+4) : 2(2-x2)

= (x4-4x2+4) : (2-x2)

= (x - 2) : (2-x2)

=   - 1

\(2x^4+8x^2+8=2\left(x^4+4x^2+4\right)=2\left(x^2+2\right)^2\)

\(\left(4-2x^2\right)=2\left(2-x^2\right)\Rightarrow\frac{2x^4+8x^2+8}{4-2x^2}=\frac{2\left(x^2+2\right)^2}{2\left(2-x^2\right)}=\frac{\left(x^2+2\right)^2}{2-x^2}\)

Nếu không sai đề thì tự phân tích rồi thực hiện phép chia đa thức

3 tháng 7 2016

Đề là gì vậy cậu ???? 

 

 

 

 

3 tháng 7 2016

Làm cái j z bạn

lolang

26 tháng 6 2016

\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)

DD
30 tháng 8 2021

a) \(x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\)

\(\left(x^2+4x+4\right)\div\left(x+2\right)=x+2\)

b) \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(\left(x^3-1\right)\div\left(x-1\right)=x^2+x+1\)

c) \(x^3+6x^2+12x+8=x^3+3.x^2.2+3.x.2^2+2^3=\left(x+2\right)^3\)

\(\left(x^3+6x^2+12x+8\right)\div\left(x+2\right)=\left(x+2\right)^2\)

6 tháng 8 2015

a) (x2 + 2xy + y2) : (x + y);

=(x+y)2:(x+y)

=x+y                       

b) (125x3 + 1) : (5x + 1);

=(5x+1)(25x2-5x+1):(5x+1)

=25x2-5x+1

 

c) (x2 – 2xy + y2) : (y – x).

=(x-y)2:(y-x)

=(y-x)2:(y-x)

=y-x

 

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

17 tháng 9 2016

a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)

\(=\left(x+y\right)^2:\left(x+y\right)\)

\(=x+y\)

b) \(\left(125x^3+1\right):\left(5x+1\right)\)

\(=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)\) 

\(=25x^2-5x+1\)

c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)

\(=\left(x-y\right)^2:\left(y-x\right)\)

\(=\left(y-x\right)^2:\left(y-x\right)\)

\(=y-x\)

25 tháng 8 2016

a ) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)

\(=\left(x+y\right)^2:\left(x+y\right)\)

\(=\left(x+y\right)\)

b ) \(\left(125x^3+1\right)\left(5x+1\right)\)

\(=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\)

\(=\left(5x\right)^2-5x+1\)

\(=25x^2-5x+1\)

c ) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)

\(=\left(x-y\right)^2:\left[-\left(x-y\right)\right]\)

\(=-\left(x-y\right)\)

\(=y-x\)

25 tháng 8 2016

a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\\ =\left(x+y\right)^2:\left(x+y\right)\\ =\left(x+y\right)\)

b) \(\left(125x^3+1\right)\left(5x+1\right)\\=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\\ =\left(5x\right)^2-5x+1 \\ =25x^2-5x+1\)

c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\\ =\left(x-y\right)^2:\left[-\left(x-y\right)\right]\\ =-\left(x-y\right)\\ =y-x\)

8 tháng 10 2017

Ta có: (y4 - 2y3 + 4y2 - 8y) : (y2 + 4)

= [y4 + 4y2 - 2y3 - 8y] : (y2 + 4)

= [y2.(y2 + 4) - 2y.(y2 + 4)] : (y2 + 4)

= (y2 + 4).(y2 - 2y) : (y2 + 4)

= y2 - 2y = y.(y-2).