Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24
A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4
A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2 + 4 \(\ge\)4 \(\forall\)x;y;z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)
Vậy MinA = 4 <=> x= 1 ; y = -3 và z = -1/3
\(x^2+2y^2+9z^2-2x+12y+6z+24\)
\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)
Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)
Vậy................................
Ta có:
\(3-S=\left(x^2+4y^2+9z^2\right)-\left(2x+4y+6z\right)\)
\(\Rightarrow3-S=\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)+\left(9z^2-6z+1\right)-3\)
\(\Rightarrow6-S=\left(x-1\right)^2+\left(2y-1\right)^2+\left(3z-1\right)^2\ge0\)
\(\Rightarrow S\le6\)
\(S_{max}=6\) khi \(\left\{{}\begin{matrix}x-1=0\\2y-1=0\\3z-1=0\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
(2x4-8x2+8) : (4-2x2)
= 2(x4-4x2+4) : 2(2-x2)
= (x4-4x2+4) : (2-x2)
= (x2 - 2) : (2-x2)
= - 1
\(2x^4+8x^2+8=2\left(x^4+4x^2+4\right)=2\left(x^2+2\right)^2\)
\(\left(4-2x^2\right)=2\left(2-x^2\right)\Rightarrow\frac{2x^4+8x^2+8}{4-2x^2}=\frac{2\left(x^2+2\right)^2}{2\left(2-x^2\right)}=\frac{\left(x^2+2\right)^2}{2-x^2}\)
Nếu không sai đề thì tự phân tích rồi thực hiện phép chia đa thức
a) Kết quả - x 2 + 2. b) Kết quả − 1 2 ( 4 x 2 + 10 x + 25 ) .
c) Kết quả - ( x 3 + 1 ) 2 .
Lời giải:
$x^2+4y^2+9z^2=2x+4y+6z-3$
$\Leftrightarrow (x^2-2x+1)+(4y^2-4y+1)+(9z^2-6z+1)=0$
$\Leftrightarrow (x-1)^2+(2y-1)^2+(3z-1)^2=0$
Ta thấy: $(x-1)^2\geq 0; (2y-1)^2\geq 0; (3z-1)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-1)^2=(3z-1)^2=0$
$\Leftrightarrow x=1; y=\frac{1}{2}; z=\frac{1}{3}$
Khi đó:
$xyz=1.\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)