K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)

M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)

M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)

Đặt \(\frac{1}{x^2+1}=y\)

Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)

Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10

<=> x2 = 9 <=> \(x=\pm3\)

Vậy MinM = 19/20 khi x = 3 hoặc x = -3

2 tháng 1 2020

Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.

Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!

5 tháng 8 2015

a) 3 x^2 - 6x - 1

= 3 ( x^2 - 2x - 1/3 )

= 3 ( x^2 - 2x + 1 - 4/3)

= 3 [ ( x- 1 )^2 - 4/3)

=3 ( x-  1 )^2 - 4 

Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4 

VẬy GTNN là 4 khi x- 1 = 0 => x = 1 

b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )

= ( x - 1 )( x+ 6 )( x+  2 )( x+ 3 )

= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )

Đặt x^2 + 5x = t ta có :

  = ( t- 6 )( t+ 6 )

=  t^2 - 36

Vì t^2 >=0 => t^2 -36 >= -36 

VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5 

Nhớ **** 

13 tháng 6 2017

x = 0 hoặc x = 5 

ủng hộ mk nha thanks

22 tháng 11 2017

giup minh voi cac ban

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2