Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1\)(-1<x<1)
Đặt a=1-x2 ta được: (ĐK a>0)
\(\frac{1}{a}>\frac{3x}{\sqrt{a}}-1\)
\(\Leftrightarrow\frac{1}{a}-\frac{3\sqrt{a}x}{a}+\frac{a}{a}>0\)
\(\Leftrightarrow\frac{1-3\sqrt{a}x+a}{a}>0\)
\(\Leftrightarrow1-3\sqrt{a}x+a>0\left(a>0\right)\)
\(\Leftrightarrow1-3\sqrt{x^2-1}.x+x^2-1>0\)
\(\Leftrightarrow x^2>3\sqrt{x^2-1}x\)
<=>x4 > 9.(x2-1).x2
<=>x4>9x4-9x2
<=>8x4-9x2<0
<=>x2.(8x2-9)<0
<=>8x2-9<0
<=>x2<9/8
=>\(-\frac{3\sqrt{2}}{4}\)<x<\(\frac{3\sqrt{2}}{4}\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
\(\Delta'=\left(3m\right)^2-m.\left(8m-10\right)=9m^2-8m^2+10m=m^2+10m\)
Để pt có 2 nghiệm phân biệt \(\Delta'>0\Leftrightarrow m^2+10m>0\Leftrightarrow m\left(m+10\right)>0\)
Xét 2 trường hợp:
+) m > 0 và m > -10 => m > 0
+) m < 0 và m < -10 => m < -10
Vậy m > 0 hoặc m < -10 thì pt có 2 nghiệm phân biệt
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
ví dụ 5: câu b. help me<>
\(tan\dfrac{\pi}{6}+tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}+tan\dfrac{\pi}{3}\)\(=\left(tan\dfrac{\pi}{6}+tan\dfrac{\pi}{3}\right)+\left(tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}\right)\) (1)
Áp dụng công thức: \(tanx+tan\left(90^o-x\right)=tanx+cotx=\dfrac{1}{sinx.cosx}\)
Ta được:(1) = \(\dfrac{1}{sin\dfrac{\pi}{6}cos\dfrac{\pi}{6}}+\dfrac{1}{sin\dfrac{2\pi}{9}.cos\dfrac{2\pi}{9}}\)
\(=\dfrac{2}{sin\dfrac{\pi}{3}}+\dfrac{3}{sin\dfrac{4\pi}{9}}\)
Em làm tiếp nhé.