Anh Lâm mai giúp iem câu này...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2021

Đây là định lý về giá trị trung bình trong tích phân.

Việc chứng minh nó khá vô nghĩa, vì giống như chứng minh công thức tích phân vậy, đều xuất phát từ việc chia nhỏ vô hạn và tính tổng.

Cho nên, chứng minh để làm gì?

25 tháng 2 2021

Dạ, tại nó nằm trong phần mở đầu bdt tích phân và liên uan đến định lý Lagrange nên em nghĩ rằng nó sẽ áp dụng vô bài :>?

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 17:

\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)

\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)

Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)

\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)

\(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)

\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 11)

Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)

\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)

\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)

\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)

Đáp án C

Câu 20)

Ta có:

\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)

\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)

\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)

Đáp án A.

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 


Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)