Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
S = ( 3 + 32 +33)+(34+35+36) + (37+38+39)
S = 3.(1+3+9)+34.(1+3+9)+37.(1+3+9)
S = 3.13 + 34.13+37.13
S = 13.(3+34+37) ⋮13 ( đpcm)
Tick cho mình
`#3107.101107`
`S = 3 + 3^2 + 3^3 + ... + 3^9`
`= (3 + 3^2 + 3^3) + ... + (3^7 + 3^8 + 3^9)`
`= 3(1 + 3 + 3^2) + ... + 3^7(1 + 3 +3^2)`
`= (1 + 3 + 3^2)(3 + ... + 3^7)`
`= 13(3 + ... + 3^7)` $\vdots 13$
$\Rightarrow S \vdots 13.$
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !
Mình nghĩ đây mới là đề đúng nè Lại Mai Trang : S = 1 + 3 + 32 + .........359
a)<=> 1(1+ 3) + 32 (1 + 3) +...........+ 358(1+3)
<=> 4(1 + 32+.....+ 358) Vì tích trên có thừa số là 4 nên chia hết cho 4
b) <=> 1(1 + 3 + 32) + ............+ 357(1 + 3 + 32)
<=> 4(1 + .......+57) Vì tích trên có thừa số là 13 => tích trên chia hết cho 13
~~Học tốt nha~~
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
S = 1 + 3 + 32 + 33 + ... + 359
S = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 357 + 358 + 359 )
S = 13 + 33( 1 + 3 + 32 ) + ... + 357( 1 + 3 + 32 )
S = 13 + 33 . 13 + ... + 357 . 13
S = 13 ( 1 + 33 + ... + 357 ) ⋮ 13 vì 13 ⋮ 13
Vậy S ⋮ 13