Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
\(a-b\) là bội của 6 nên \(a-b\) chia hết cho 6
\(a-b\) chia hết cho 6 \(\Rightarrow\left(a-b\right)+12b=a+11b\) chia hết cho 6 => \(a+11b\) là bội của 6
\(\left(a+11b\right)+\left(5a+b\right)=6a+12b\) chia hết cho 6 mà \(a+11b\) chia hết cho 6 nên \(5a+b\) chia hết cho 6 => \(5a+b\) là bội của 6
\(M=c.\left(b-a\right)-b\left(a+c\right)\)
\(M=bc-ac-ba-bc\)
\(M=-ac-ba\)
\(M=-a.\left(c+b\right)\)
theo bài ra \(a=-15\); \(b+c=-6\)
thay vào \(M\)ta được
\(M=-\left(-15\right).\left(-6\right)\)
\(M=-\left(15.6\right)\)
\(M=-90\)
vậy \(M=-90\)
Anh em hả, mk ko phải anh
Do a > b
=> a.k > b.k
=> a.k + a.b > b.k + a.b
=> a.(b + k) > b.(a + k)
=> a/b > a+k/b+k
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản
a, A = \(\dfrac{3^{10}\times10+3^{10}\times6}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times\left(10+6\right)}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times16}{3^9\times16}\)
A = 3
c, C = \(\dfrac{36^{10}\times25^{15}}{30^8}\)
C = \(\dfrac{\left(6^2\right)^{10}.\left(5^2\right)^{15}}{30^8}\)
C = \(\dfrac{6^{20}.5^{30}}{6^8.5^8}\)
C = 612.522