K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Anh để ý trên mục Toán lớp 8 có một câu hỏi được nhiều người đăng cùng lúc, nên anh xin trả lời câu hỏi đó.

Đề: Cho \(1\le a,b,c\le3\) và \(a+b+c=6\) . Tìm \(max\) của biểu thức \(f\left(a,b,c\right)=a^2+b^2+c^2\).

Trong đó kí hiệu \(f\left(x,y,z\right)\) là đa thức khi thay \(a=x,b=y,c=z\), tức là \(f\left(x,y,z\right)=x^2+y^2+z^2\).

-----

Nhận xét: Trong 3 số \(a,b,c\) phải có số lớn hơn bằng 2. Không mất tính tổng quát gọi số đó là \(a\).

Khi đó \(b+c-1\le5-a=3\)

Ta có \(f\left(a,b,c\right)=a^2+b^2+c^2\) và \(f\left(a,b+c-1,1\right)=a^2+\left(b+c-1\right)^2+1\).

Ta sẽ CM \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Biến đổi tương đương ta được \(b^2+c^2\le b^2+c^2+2bc-2b-2c+2\Leftrightarrow\left(b-1\right)\left(c-1\right)\ge0\).

Điều này đúng. Vậy \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Nhận thấy do \(a+b+c=6\) nên \(f\left(a,b+c-1,1\right)=f\left(a,5-a,1\right)=a^2+\left(5-a\right)^2+1=2\left(a^2-5a+13\right)\).

Ta sẽ tìm max của biểu thức này. Giá trị max đó là \(14\), xảy ra khi \(a=2\)

Vậy \(f\left(a,b,c\right)\le14\). Đẳng thức xảy ra tại \(a=2,b=3,c=1\).

------

Ý tưởng tương tự trên sẽ giúp các em làm được bài toán sau:

Cho \(0\le a,b,c\le2\) thoả \(a+b+c=3\). Tìm min của biểu thức \(ab+bc+ca\).

3
2 tháng 1 2017

À có ai không hiểu gì thì hỏi nha! Còn ai muốn click "đúng" cho anh thì cho anh cảm ơn!

5 tháng 9 2019

Cách khác cho bài đầu: 

Ta có: \(a+b=6-c\le5\)

\(a^2+b^2+c^2=a.a+b.b+c.c\)

\(=\left(a-b\right)a+\left(b-c\right)\left(a+b\right)+c\left(a+b+c\right)\)

\(\le\left(a-b\right).3+5\left(b-c\right)+6c\)

\(=3a+2b+c=\left(a+b+c\right)+a+\left(a+b\right)\)

\(\le6+3+5=14\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;2;1\right)\) và các hoán vị của nó.

Cách này dường như ez hơn ấy nhỉ? Mà đúng không ta:3

2 tháng 3 2017

Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?

Từ 1/m + 1/n + 1/p = 0

=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0

Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4

Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4

Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4

3 tháng 3 2017

Cảm ơn bạn nha !

27 tháng 1 2020

Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :

\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)

27 tháng 1 2020

Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:

Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)

\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)

 Thôi,đi vào giải quyết bài toán.

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)

Khi đó BĐT tương đương với:

\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)

Ta cần chứng minh:

\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\) 

Hình như cái BĐT cuối đúng thì phải ạ.

Dấu "=" xảy ra tại a=b=c=1

cái trên thì bn dùng BĐT Bunhiakovshi nha

cái dưới hơi rườm tí mik ko bt lm đúng ko

19 tháng 9 2019

\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)

\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)

\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)

\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)

\(+\left(ax-a+b\right)]\)

\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)

\(-bx+ax-a+b)\)

\(=x\left(x+1\right)\left(4ax-a+3b\right)\)

Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)

Đồng nhất hệ số là ra 

5 tháng 9 2017

1.(x-y+z)2+(z-y)2+2(x-y+z)(y-z)= (x-y+z)+2(x-y+z)(y-z)+(y-z)2=(x-y+z+y-z)2=x2

CT : (A+B)2=A2+2AB+B2

5 tháng 9 2017

Ta có : A = 4x - x2 + 3

=> A = -(x2 - 4x - 3)

=> A = -(x2 - 4x + 4 - 7) 

=> A = -(x2 - 4x + 4) + 7

=> A = -(x - 2)2 + 7

Vì : \(-\left(x-2\right)^2\le0\forall x\) 

=>  A = -(x - 2)2 + 7 \(\le7\forall x\)

Vậy Amax = 7 khi x = 2