K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 17:

\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)

\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)

Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)

\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)

\(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)

\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 11)

Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)

\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)

\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)

\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)

Đáp án C

Câu 20)

Ta có:

\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)

\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)

\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)

Đáp án A.

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B

làm tới câu 9 chắc cậu cũng có kiến thức nên tôi nêu ý tưởng

thấy giao với trục ox => tung độ =0

y=0

với mọi m ta luôn có nghiệm x=1 cho y =0

vậy có 1 nghệm x1 rồi đấy

dùng hoocne gì đó tìm pt còn lại là :

\(y=\dfrac{1}{3}x^2+\left(\dfrac{1}{3}-m\right)x-m-\dfrac{2}{3}\)

còn 2 nghiện x2 và x3 trong pt này

h ta cần : \(x_2^2+x_3^2>14\)

<=>\(\left(x_2+x_3\right)^2-2x_2x_3>14\)

rồi dùng viet thế vào rồi tìm m

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

20 tháng 8 2016

limdim

20 tháng 8 2016

lolangBiện luận số số nghiệm, số giao điểm của đồ thi

18 tháng 5 2016

nhiều lúc vậy đó bn mà cx có khi bn trả lời ko logic như bn nguyễn thế bảo cx nên

18 tháng 5 2016

Bạn Thế Bảo làm đủ ý hơn em nhé.

Em hãy lưu ý: Các thầy cô ưu tiên trước hết là trình bày đúng, đầy đủ, đẹp rồi mới tính đến thời gian nhé.

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Câu 5 là câu nào thế bạn?

19 tháng 6 2016

Đề chính xác chưa bạn

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 22)

Bạn dùng nguyên hàm từng phần thôi

Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)

Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)

Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)

Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)

\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)

\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)

\(I=e^{-x}(x^2+x+1)+c\)

Do đó \(a=b=c=1\rightarrow a+b+c=3\)

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 23:

Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho

\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)

Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)

\(\Rightarrow a=4,b=-2,c=1\). Đáp án C

Câu 25:

Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)

\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)

\(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)

Đáp án D