Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 5:
x=3,6
y=6,4
câu 6: chụp lại đề
câu 7:
a)ĐKXĐ: \(x\ge0\)
\(3\sqrt{x}=\sqrt{12}\\ \Rightarrow9x=12\\ \Rightarrow x=\dfrac{4}{3}\)
b) ĐKXĐ: \(x\ge6\)
\(\sqrt{x-6}=3\\ \Rightarrow x-6=9\\ \Rightarrow x=15\)
6.
\(0,3a^3b^2\sqrt{\dfrac{9}{a^4b^8}}=0,3a^3b^2.\dfrac{3}{a^2b^4}=\dfrac{0,9.a}{b^2}\)
Đáp án B
7.
\(-\dfrac{1}{3}ab^3\sqrt{\dfrac{9a^2}{b^6}}=-\dfrac{1}{3}ab^3.\dfrac{3\left|a\right|}{\left|b^3\right|}=-ab^3.\dfrac{-a}{b^3}=a^2\)
Đáp án C
Bạn chụp ảnh đăng đề bài lên nhà hoặc bạn viết có kí tự ra ko mk ko biết đề bài chính xác là gì
\(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{-2\sqrt{x}}=\dfrac{2x}{-2\sqrt{x}}=-\sqrt{x}\)
\(P=-\sqrt{x}=-\sqrt{4}=-2\left(đpcm\right)\)
Bài 3:
Gọi K là giao của AH và BC thì AK là đường cao thứ 3 (H là trực tâm)
Vì \(\widehat{BDC}=\widehat{BEC}=90^0\) nên BEDC nội tiếp
Lại có \(BI=IC=ID=IE=\dfrac{1}{2}BC\) (trung tuyến ứng cạnh huyền) nên I là tâm đg tròn ngoại tiếp BDEC
Gọi G là trung điểm AH thì \(AG=GD=DE=\dfrac{1}{2}AH\) (trung tuyến ứng ch)
Do đó G là tâm () ngoại tiếp tg ADE
Vì \(GA=GD\Rightarrow\widehat{DAG}=\widehat{GDA}\)
Vì \(ID=IB\Rightarrow\widehat{ABI}=\widehat{IDB}\)
Do đó \(\widehat{IDB}+\widehat{GDA}=\widehat{DAG}+\widehat{ABI}=90^0\left(\Delta AKB\perp K\right)\)
Do đó \(\widehat{IDG}=180^0-\left(\widehat{IDB}+\widehat{GDA}\right)=90^0\)
Vậy \(ID\perp IG\) hay ...
Có \(A>\sqrt{6}\)
Có \(\sqrt{6}< \sqrt{9}=3\) \(\Rightarrow\sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)\(\Rightarrow A=\sqrt{6+\sqrt{6+...+\sqrt{6}}}< 3\)
\(\Rightarrow\sqrt{6}< A< 3\)
\(\Rightarrow A\notin N\)