K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số bi của Hải là:

     12:1/2=24(viên)

Số bi cua Hà là:

     24*2/3=16(viên)

Số bi của An là:

     16*5/4=20(viên)

ĐS:...

Số bi của cả 3 bạn là:

      20+16+24=60(viên)

Tỉ số % số bi của Hải so với 3 bạn là:

      24*100:60=40%

Số túi nhiều nhất có thể chia là 6 túi

Khi đó, mỗi túi có 7 bi đỏ và 5 bi xanh

22 tháng 10 2016

Khi Hà cho An 12 viên thì tổng số bi của cả 2 không thay đổi.

Khi Hà cho An 12 viên bi thì Hà còn số viên bi là:

98:2=49(viên)

Lúc đầu,Hà có số viên bi là:

49+12=61(viên)

Lúc đầu,An có số viên bi là:

98-61=37(viên)

Đáp số:Hà:61 viên.

An:37 viên.

5D

4B

3A

2C

12 tháng 5 2023

Thịnh ơi câu 1 kia?

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_7^2.C_7^2 = 441\)

a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)

Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)

b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)

Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)

c) Gọi là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”

\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ

Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 120\) cách

Vậy có \(120.24 = 2880\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách

Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố  “Bốn viên bi xanh được xếp liền nhau” 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách để Hà chọn ra đúng 2 viên bi khác màu là: 5. 7 = 35 (cách)

24 tháng 4 2023

Lấy ngẫu nhiên từ mỗi túi 1 viên bi: \(C^1_5.C^1_9\) ( cách )

Trường hợp 1: Lấy ra từ mỗi túi 1 viên bi đỏ: 

\(C^1_3.C^1_4\) ( cách ) 

Trường hợp 2:  Lấy ra từ mỗi túi 1 viên bi xanh

\(C^1_2.C^1_5\) ( cách )

Xác suất lấy được 2 bi cùng màu là:   \(\dfrac{C^1_3.C^1_4+C^1_2.C^1_5}{C^1_5.C^1_9}=\dfrac{22}{45}\)

24 tháng 4 2023

Lấy ngẫu nhiên 1 bi từ các túi có :

\(TH1:\) Lấy 1 bi từ túi số 1 có 3 bi đỏ và 2 bi xanh có \(C^1_5\) cách

\(TH2:\) Lấy 1 bi từ túi số 2 có 4 bi đỏ, 5 bi xanh có \(C_9^1\) cách

Theo quy tắc cộng, ta có \(C_5^1+C_9^1=14\) cách lấy ngẫu nhiên 1 bi từ các túi.

Vậy \(n\left(\Omega\right)=14\)

Gọi \(A:``\) Lấy ra 2 bi cùng màu \("\)

\(TH1:\) Lấy ra mỗi túi 1 bi đỏ có \(C^1_3.C_4^1\) cách

\(TH2:\) Lấy ra mỗi túi 1 bi xanh có \(C_2^1.C_5^1\) cách

Theo quy tắc cộng, ta có \(C^1_3.C_4^1+C_2^1.C^1_5=22\)

\(\Rightarrow n\left(A\right)=22\)

Xác suất \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{22}{14}=\dfrac{11}{7}\)