Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì \(m\left(m+1\right)\left(m+2\right)+5\) và \(m\left(m+1\right)\left(m+2\right)+6\) là hai số tự nhiên liên tiếp
Do đó \(A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\) tối giản (đpcm)
b ) Xét mẫu \(m\left(m+1\right)\left(m+2\right)+6\)
Ta thấy \(m\left(m+1\right)\left(m+2\right)\) là tích 3 số tự nhiên liên tiếp nên \(m\left(m+1\right)\left(m+2\right)\text{⋮}3\)
Mà \(6\text{⋮}3\) nên \(\left[m\left(m+1\right)\left(m+2\right)+6\right]\text{⋮}3\)
Mà a lại là phân số tối giản (theo a) nên \(A\) đc viết dưới dạng số thập phân vô hạn tuần hoàn
a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)
\(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)
\(=m.\left(m+1\right).\left(m+2\right)+5\)
Giả sử \(d\) là ƯCLN của \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)
\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)
\( \implies\) \(1\) chia hết cho \(d\)
\( \implies\) \(d=1\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau
Vậy \(A\) là phân số tối giản
b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)
Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\)
Vậy \(A\) là số thập phân vô hạn tuần hoàn
Bài 1: Ta có: \(\left\{{}\begin{matrix}A=\left(-3x^5y^3\right)^4\ge0\\B=2x^2z^4\ge0\end{matrix}\right.\) với mọi x
Để $A+B=0$ thì \(\left\{{}\begin{matrix}\left(-3x^5y^3\right)^4=0\\2x^2z^4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Bài 2: Ta có: \(\left|x-5\right|\ge0\) với mọi x
\(\Rightarrow-3\left|x-5\right|\le0\) với mọi x
Để biểu thức lớn nhất,thì \(-3\left|x-5\right|=0\)
\(\Rightarrow\left|x-5\right|=0\)
Vậy x=5
\(\Rightarrow x=5\)
a) \(\left(1:2\right)^m=1:32\Leftrightarrow\left(\frac{1}{2}\right)^m=\frac{1}{32}\Leftrightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)
b) \(343:125=\left(7:5\right)^n\Leftrightarrow\frac{343}{125}=\left(\frac{7}{5}\right)^n\Leftrightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)
a, \(\left(1:2\right)^m=1:32=\left(1:2\right)^5\Rightarrow m=5\)
b, \(343:125=\left(7:5\right)^n\Rightarrow\left(7:5\right)^3=\left(7:5\right)^n\Rightarrow n=3\)
a) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}\) m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
b) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}=1-\frac{1}{m^3+3m^2+2m+6}=1-\frac{1}{m\left(m+1\right)\left(m+2\right)+6}\)
m(m+1)(m+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.
=> m(m+1)(m+2) + 6 chia hết cho 6.
mà 1 chia 6 là số TP vô hạn tuần hoàn.
=> A là số TP vô hạn tuần hoàn.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>A=m3+3m2+2m+5m3+3m2+2m+6 m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
b) \(\left(-\frac{3}{4}\right)^{3m-1}=\left(\frac{4}{3}\right)^4=\left(\frac{1}{\frac{3}{4}}\right)^4=\left(\left(\frac{3}{4}\right)^{-1}\right)^4=\left(\frac{3}{4}\right)^{-4}=\left(-\frac{3}{4}\right)^{-4}\) (Lũy thừa số mũ chẵn thì am = (-a)m)
=> 3m - 1 = -4 => 3m = -3 => m = -1
a) \(7^{m-1}=\frac{343}{345}\) => không tồn tại số nguyên m thỏa mãn
a) \(7^{m+2}+2.7^{m-1}=343\)
\(7^{m-1}.7^3+2.7^{m-1}=343\)
\(7^{m-1}.\left(7^3+2\right)=343\)
\(7^{m-1}.345=343\)
\(7^{m-1}=\frac{343}{345}\)
.........................
\(A=\frac{m^3+3m^2+2m+5}{m.\left(m+1\right).\left(m+2\right)+6}=\frac{m^3+m^2+2m^2+2m+5}{m.\left(m+1\right).\left(m+2\right)+6}\)
\(A=\frac{m^2.\left(m+1\right)+2m.\left(m+1\right)+5}{m.\left(m+1\right).\left(m+2\right)+6}\)
\(A=\frac{\left(m+1\right).\left(m^2+2m\right)+5}{m.\left(m+1\right).\left(m+2\right)+6}\)
\(A=\frac{m.\left(m+1\right).\left(m+2\right)+5}{m.\left(m+1\right).\left(m+2\right)+6}=\frac{a}{a+1}\)
Gọi d = ƯCLN(a; a + 1) (d ϵ N*)
\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\)\(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> ƯCLN(a; a + 1) = 1
=> A là phân số tối giản (đpcm)
Xin lỗi các bạn mình Viết nhầm m đầu tiên phải là m3