Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) Ta có :
\(43^{43}-17^{17}=43^{40}\cdot43^3-17^{16}\cdot17=\left(43^4\right)^{10}\cdot43^3-\left(17^4\right)^4\cdot17=\overline{\left(...1\right)}^{10}\cdot\overline{\left(...3\right)}^3-\overline{\left(...1\right)}^4\cdot17\)
\(=\overline{\left(...1\right)}\cdot\overline{\left(...7\right)}-\overline{\left(...7\right)}=\overline{\left(...7\right)}-\overline{\left(...7\right)}=\overline{\left(...0\right)}\text{ }⋮\text{ }10\)
\(\Rightarrow\text{ ĐPCM}\)
ta có \(10^n-1=9999...99\)(\(n-1\)chữ sô \(9\))
\(\Rightarrow10^n-1⋮9\)
\(3\frac{1}{5}-x=1\frac{3}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{8}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{23}{10}\)
\(x=\frac{23}{10}-\frac{16}{5}\)
\(x=-\frac{9}{10}\)
\(\hept{\begin{cases}a-3⋮7\Rightarrow a-3+28⋮7\Rightarrow a+25⋮7\\a-5⋮10\Rightarrow a-5+30⋮10\Rightarrow a+25⋮10\end{cases}}\)
\(\Rightarrow a+25\in BC\left(7;10\right)\)
Mà (7,10)=1
\(\Rightarrow a+25\in B\left(70\right)\Rightarrow a+25\in\left\{70;140;...\right\}\)
Mà\(a\le100\Rightarrow a+25\le125\)
\(\Rightarrow a+25=70\Rightarrow a=45\)
Vậy a=45
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)