Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3.42.27)2:(32.220)
= ( 3.24.27)2 : (32.220)
= (3.211)2 :(32.220)
= 32.222:(32.220)
=22 = 4
chúc bn hc tốt
\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)
Chúc em học tốt nhé!
Bài này chỉ cần dùng phương pháp trực tiêu là xong rồi nhé!
Các bài sau em làm tương tự thôi nha!
|y|=3
Suy ra: y=3 hoặc y=-3
nếu x=2 và y=3 thì
x^2+2xy^2-3xy-2=2^2+2.2.3^2-3.2.3-2=4+36-18-2=20
Nếu x=2 và y=-3 thì
x^2+2xy^2-3xy-2=2^2+2.2.(-3)^2-3.2.(-3)-2=4+36-(-18)-2=56
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha
bn ơi ghi lại đề bài = phân số đc hk ghi cả nhân hay chia nx khó nhìn lắm!
Ta sẽ chứng minh \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(*).
Với \(n=1\)thì: \(\frac{1\left(1+1\right)\left(2.1+1\right)}{6}=1\)do đó (*) đúng với \(n=1\).
GIả sử (*) đúng với \(n=k\ge1\), tức là \(1+2^2+3^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\).
Ta sẽ chứng minh (*) đúng với \(n=k+1\), tức là \(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\).
Thật vậy, ta có:
\(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Suy ra (*) đúng với \(n=k+1\).
Theo nguyên lí quy nạp toán học, (*) đúng với \(n\inℕ\).
Vậy \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\).
Ta có A = 1.1 + 2.2 + 3.3 + ... + n.n
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + n.(n + 1 - 1)
= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - (1 + 2 + 3 + ... + n)
= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - n(n + 1) : 2
Đặt B = 1.2 + 2.3 + 3.4 + .... + n(n + 1)
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.(n + 1).3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n.(n + 1).[(n + 2) - (n - 1)]
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
= n(n + 1)(n + 2)
=> B = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Khi đó \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)